
Overview of Natural Language Processing
Part II & ACS L390

Lecture 5: Phrase Structure and Structured Prediction

Weiwei Sun

Department of Computer Science and Technology
University of Cambridge

Michaelmas 2024/25

pidibsthe

with

nindinthe

intoquastoficallyblorked

dripnersyinkish

some

Words are organized into nested blocks

Lecture 5: Phrase Structure and Structured Prediction

1. Phrase structure

3. Structured prediction

4. Probabilistic Context-free grammars

5. Neural parameterisation

Phrase Structure

Interview of Noam Chomsky by Lex Fridman

(1) a. the guy who fixed the car very carefully packed his tools

b. very carefully, the guy who fixed the car packed his tools

c. *very carefully, the guy who fixed the car is tall

I think the deepest property of language
and puzzling property that’s been discovered
is what is sometimes called structure depen-
dence. [...] Linear closeness is an easy com-
putation, but here you’re doing a much more,
what looks like a more complex computation.

Noam Chomsky: Language, Cognition, and Deep Learning

○www.youtube.com/watch?v=cMscNuSUy0I

1 of 31

www.youtube.com/watch?v=cMscNuSUy0I

Constituency (phrase structure)

The basic idea

Phrase structure organizes words into nested constituents, which can be
represented as a tree.

S

VP

VP

NP

N

tools

D

his

V

packed

ADVP

ADVP

ADV

carefully

ADV

very

NP

N

S

VP

NP

N

car

D

the

V

fixed

NP

N

who

N

guy

D

the

2 of 31

Different structures, different meaning
S

VP

VP

packed his tools

ADVP

very carefully

NP

the guy who fixed the car

S

VP

packed his tools

NP

N

S

VP

ADVP

very carefully

VP

fixed the car

NP

N

who

N

guy

D

the

Results by a cool parser: http://erg.delph-in.net/logon

3 of 31

http://erg.delph-in.net/logon

Locality S

S

VP

packed his tools
*is tall

NP

N

S

VP

fixed the car

NP

N

who

N

guy

D

the

PU

,

ADVP

very carefully

very carefully
is hierarchically closer to

packed

4 of 31

Applications of parsing

Modern parsers are quite accurate

For some languages, automatic syntactic parsing is good enough to help in
a range of NLP tasks

• Machine translation

• Information extraction

• Grammar checking

• etc.

Translate “英格兰的经济发展” into English

英格兰 的 经济 发展

economic development of England

finite-state transducer?

5 of 31

Applications of parsing

Modern parsers are quite accurate

For some languages, automatic syntactic parsing is good enough to help in
a range of NLP tasks

• Machine translation

• Information extraction

• Grammar checking

• etc.

Translate “英格兰的经济发展” into English

英格兰 的 经济 发展

economic development of England

finite-state transducer?

5 of 31

Applications of parsing

Modern parsers are quite accurate

For some languages, automatic syntactic parsing is good enough to help in
a range of NLP tasks

• Machine translation

• Information extraction

• Grammar checking

• etc.

Translate “英格兰的经济发展” into English

英格兰 的 经济 发展

economic development of England

finite-state transducer?
5 of 31

An example: Tree-to-string transduction

NP

NP

N

发展

N

经济

DNP

DEG

的

NP

NR

英格兰

NP of NP ▷R2
NP of England ▷R1
N N of England ▷R3
economic N of England ▷R4
economic development of England ▷R5

recursive
form transformation

R1

NP

NR

英格兰

X

England

R2

NP

NPDNP

DEG

的

NP
X

XofX

R3

NP

NN

X

XX

R4

N

经济

X

economic

R5

N

发展

X

development

6 of 31

An example: Tree-to-string transduction

NP

NP

N

发展

N

经济

DNP

DEG

的

NP

NR

英格兰

NP of NP ▷R2

NP of England ▷R1
N N of England ▷R3
economic N of England ▷R4
economic development of England ▷R5

recursive
form transformation

R1

NP

NR

英格兰

X

England

R2

NP

NPDNP

DEG

的

NP
X

XofX

R3

NP

NN

X

XX

R4

N

经济

X

economic

R5

N

发展

X

development

6 of 31

An example: Tree-to-string transduction

NP

NP

N

发展

N

经济

DNP

DEG

的

NP

NR

英格兰

NP of NP ▷R2
NP of England ▷R1

N N of England ▷R3
economic N of England ▷R4
economic development of England ▷R5

recursive
form transformation

R1

NP

NR

英格兰

X

England

R2

NP

NPDNP

DEG

的

NP
X

XofX

R3

NP

NN

X

XX

R4

N

经济

X

economic

R5

N

发展

X

development

6 of 31

An example: Tree-to-string transduction

NP

NP

N

发展

N

经济

DNP

DEG

的

NP

NR

英格兰

NP of NP ▷R2
NP of England ▷R1
N N of England ▷R3

economic N of England ▷R4
economic development of England ▷R5

recursive
form transformation

R1

NP

NR

英格兰

X

England

R2

NP

NPDNP

DEG

的

NP
X

XofX

R3

NP

NN

X

XX

R4

N

经济

X

economic

R5

N

发展

X

development

6 of 31

An example: Tree-to-string transduction

NP

NP

N

发展

N

经济

DNP

DEG

的

NP

NR

英格兰

NP of NP ▷R2
NP of England ▷R1
N N of England ▷R3
economic N of England ▷R4

economic development of England ▷R5

recursive
form transformation

R1

NP

NR

英格兰

X

England

R2

NP

NPDNP

DEG

的

NP
X

XofX

R3

NP

NN

X

XX

R4

N

经济

X

economic

R5

N

发展

X

development

6 of 31

An example: Tree-to-string transduction

NP

NP

N

发展

N

经济

DNP

DEG

的

NP

NR

英格兰

NP of NP ▷R2
NP of England ▷R1
N N of England ▷R3
economic N of England ▷R4
economic development of England ▷R5

recursive
form transformation

R1

NP

NR

英格兰

X

England

R2

NP

NPDNP

DEG

的

NP
X

XofX

R3

NP

NN

X

XX

R4

N

经济

X

economic

R5

N

发展

X

development

6 of 31

An example: Tree-to-string transduction

NP

NP

N

发展

N

经济

DNP

DEG

的

NP

NR

英格兰

NP of NP ▷R2
NP of England ▷R1
N N of England ▷R3
economic N of England ▷R4
economic development of England ▷R5

recursive
form transformation

R1

NP

NR

英格兰

X

England

R2

NP

NPDNP

DEG

的

NP
X

XofX

R3

NP

NN

X

XX

R4

N

经济

X

economic

R5

N

发展

X

development

6 of 31

Structured Prediction

pre-lecture: watch this video
○www.youtube.com/watch?v=bjUwSHGsG9o

7 of 31

www.youtube.com/watch?v=bjUwSHGsG9o

Muhammad Li

Howard Who’s Muhammad Li?

Sheldon Muhammad is the most common first name in the world, Li,
the most common surname. As I didn’t know the answer, I
thought that gave me a mathematical edge.

8 of 31

POS tagging and prediction

some yinkish dripners blorked quastofically into nindin with the pidibs

verb adv prep noun prep det noundet

classify

adj

classify

noun

classify classify classify classify classify classify classify classify

9 of 31

POS tagging and prediction

some yinkish dripners blorked quastofically into nindin with the pidibs

verb adv prep noun prep det noundet

classify

adj

classify

noun

classify classify classify classify classify classify classify classify

9 of 31

POS tagging and prediction

some yinkish dripners blorked quastofically into nindin with the pidibs

verb adv prep noun prep det noundet

classify

adj

classify

noun

classify classify classify classify classify classify classify classify

9 of 31

Two perspectives ≈ Possible vs Probable

E

E

)E

E

int

Op

+

E

int

(

Op

*

E

int

[...] Therefore the true logic for this world
is the calculus of probabilities, which takes
account of the magnitude of the probability
which is, or ought to be, in a reasonable man’s
mind.

10 of 31

Linguistic structure prediction

As a structured prediction problem

• Search space: Is this analysis possible? ▷CFG (today)

• Measurement: Is this analysis good? ▷PCFG (today)

y∗(x; θ) = argmax
y ∈ Y(x)

Score(x,y)

• Decoding: find the analysis that obtains the highest score

• Parameter estimation: find good parameters

11 of 31

Linguistic structure prediction

As a structured prediction problem

• Search space: Is this analysis possible? ▷CFG (today)

• Measurement: Is this analysis good? ▷PCFG (today)

y∗(x; θ) = argmax
y ∈ Y(x)

Score(x,y)

• Decoding: find the analysis that obtains the highest score

• Parameter estimation: find good parameters

11 of 31

Linguistic structure prediction

As a structured prediction problem

• Search space: Is this analysis possible? ▷CFG (today)

• Measurement: Is this analysis good? ▷PCFG (today)

y∗(x; θ) = argmax
y ∈ Y(x)

Score(x,y)

• Decoding: find the analysis that obtains the highest score

• Parameter estimation: find good parameters

11 of 31

Linguistic structure prediction

As a structured prediction problem

• Search space: Is this analysis possible? ▷CFG (today)

• Measurement: Is this analysis good? ▷PCFG (today)

y∗(x; θ) = argmax
y ∈ Y(x)

Score(x,y)

• Decoding: find the analysis that obtains the highest score

• Parameter estimation: find good parameters

11 of 31

Linguistic structure prediction

As a structured prediction problem

• Search space: Is this analysis possible? ▷CFG (today)

• Measurement: Is this analysis good? ▷PCFG (today)

y∗(x; θ) = argmax
y ∈ Y(x)

Score(x,y)

• Decoding: find the analysis that obtains the highest score

• Parameter estimation: find good parameters

11 of 31

Context-Free Grammar

E

E

)E

E

int

Op

+

E

int

(

Op

*

E

int

Formal grammars

Formally specify a grammar that can generate all and only the acceptable
sentences of a natural language.

A grammar G consists of the following components:

1. A finite set Σ of terminal symbols.

2. A finite set N of nonterminal symbols that is disjoint from Σ.

3. A distinguished nonterminal symbol that is the start symbol.

4. A finite set R of production rules, each rule of the form

(Σ ∪N)+ → (Σ ∪N)∗

Each production rule maps from one string of symbols to another.

12 of 31

Formal grammars

Formally specify a grammar that can generate all and only the acceptable
sentences of a natural language.

A grammar G consists of the following components:

1. A finite set Σ of terminal symbols.

2. A finite set N of nonterminal symbols that is disjoint from Σ.

3. A distinguished nonterminal symbol that is the start symbol.

4. A finite set R of production rules, each rule of the form

(Σ ∪N)+ → (Σ ∪N)∗

Each production rule maps from one string of symbols to another.

12 of 31

Context-Free Grammars

1 N : variables

2 Σ: terminals

3 R: productions
A→ (N ∪ Σ)∗

A ∈ N

4 S: START

13 of 31

A linguistic example (1)

N = {S,NP,VP,AdjP,AdvP} ∪
{N,Adj,Adv}

Σ = {colorless, green, ideas, sleep,
furiously}

R
S→NP VP NP→AdjP NP
VP→VP AdvP
VP→V NP→N
AdvP→Adv AdjP→Adj

Adj→colorless Adj→green
N→ideas V→sleep
Adv→furiously

S = S

We can derive the structure
of a string.

S ⇒ NP VP
⇒ N VP
⇒ ideas VP
⇒ ideas VP AdvP
⇒ ideas V AdvP
⇒ ideas sleep AdvP
⇒ ideas sleep Adv
⇒ ideas sleep furiously

S

VP

AdvP

Adv

furiously

VP

V

sleep

NP

N

Ideas

14 of 31

A linguistic example (1)

N = {S,NP,VP,AdjP,AdvP} ∪
{N,Adj,Adv}

Σ = {colorless, green, ideas, sleep,
furiously}

R
S→NP VP NP→AdjP NP
VP→VP AdvP
VP→V NP→N
AdvP→Adv AdjP→Adj

Adj→colorless Adj→green
N→ideas V→sleep
Adv→furiously

S = S

We can derive the structure
of a string.

S ⇒ NP VP
⇒ N VP
⇒ ideas VP
⇒ ideas VP AdvP
⇒ ideas V AdvP
⇒ ideas sleep AdvP
⇒ ideas sleep Adv
⇒ ideas sleep furiously

S

VP

AdvP

Adv

furiously

VP

V

sleep

NP

N

Ideas

14 of 31

A linguistic example (1)

N = {S,NP,VP,AdjP,AdvP} ∪
{N,Adj,Adv}

Σ = {colorless, green, ideas, sleep,
furiously}

R
S→NP VP NP→AdjP NP
VP→VP AdvP
VP→V NP→N
AdvP→Adv AdjP→Adj

Adj→colorless Adj→green
N→ideas V→sleep
Adv→furiously

S = S

We can derive the structure
of a string.

S ⇒ NP VP

⇒ N VP
⇒ ideas VP
⇒ ideas VP AdvP
⇒ ideas V AdvP
⇒ ideas sleep AdvP
⇒ ideas sleep Adv
⇒ ideas sleep furiously

S

VP

AdvP

Adv

furiously

VP

V

sleep

NP

N

Ideas

14 of 31

A linguistic example (1)

N = {S,NP,VP,AdjP,AdvP} ∪
{N,Adj,Adv}

Σ = {colorless, green, ideas, sleep,
furiously}

R
S→NP VP NP→AdjP NP
VP→VP AdvP
VP→V NP→N
AdvP→Adv AdjP→Adj

Adj→colorless Adj→green
N→ideas V→sleep
Adv→furiously

S = S

We can derive the structure
of a string.

S ⇒ NP VP
⇒ N VP

⇒ ideas VP
⇒ ideas VP AdvP
⇒ ideas V AdvP
⇒ ideas sleep AdvP
⇒ ideas sleep Adv
⇒ ideas sleep furiously

S

VP

AdvP

Adv

furiously

VP

V

sleep

NP

N

Ideas

14 of 31

A linguistic example (1)

N = {S,NP,VP,AdjP,AdvP} ∪
{N,Adj,Adv}

Σ = {colorless, green, ideas, sleep,
furiously}

R
S→NP VP NP→AdjP NP
VP→VP AdvP
VP→V NP→N
AdvP→Adv AdjP→Adj

Adj→colorless Adj→green
N→ideas V→sleep
Adv→furiously

S = S

We can derive the structure
of a string.

S ⇒ NP VP
⇒ N VP
⇒ ideas VP
⇒ ideas VP AdvP
⇒ ideas V AdvP
⇒ ideas sleep AdvP
⇒ ideas sleep Adv
⇒ ideas sleep furiously

S

VP

AdvP

Adv

furiously

VP

V

sleep

NP

N

Ideas

14 of 31

A linguistic example (1)

N = {S,NP,VP,AdjP,AdvP} ∪
{N,Adj,Adv}

Σ = {colorless, green, ideas, sleep,
furiously}

R
S→NP VP NP→AdjP NP
VP→VP AdvP
VP→V NP→N
AdvP→Adv AdjP→Adj

Adj→colorless Adj→green
N→ideas V→sleep
Adv→furiously

S = S

We can derive the structure
of a string.

S ⇒ NP VP
⇒ N VP
⇒ ideas VP
⇒ ideas VP AdvP
⇒ ideas V AdvP
⇒ ideas sleep AdvP
⇒ ideas sleep Adv
⇒ ideas sleep furiously

S

VP

AdvP

Adv

furiously

VP

V

sleep

NP

N

Ideas

14 of 31

A linguistic example (2)

We can define the language of a grammar by applying the productions.

S

VP

AdvP

Adv

furiously

VP

V

sleep

NP

N

Ideas

S

VP

AdvP

Adv

furiously

VP

V

sleep

NP

NP

N

ideas

AdjP

Adj

Green

S

VP

AdvP

Adv

furiously

VP

V

sleep

NP

NP

N

ideas

AdjP

Adj

Colorless

S

VP

AdvP

Adv

furiously

VP

V

sleep

NP

NP

NP

N

ideas

AdjP

Adj

green

AdjP

Adj

Colorless

15 of 31

Recursion (1)

from Inception (https://www.imdb.com/title/tt1375666/)

recursion
place one component inside another component of the same type

16 of 31

https://www.imdb.com/title/tt1375666/

Recursion (2)

Natural numbers
• 0← ∅
• If n is a natural number, let n+ 1← n ∪ {n}

0 = ∅
1 = {0} = {∅}
2 = {0, 1} = {∅, {∅}}
3 = {0, 1, 2} = {∅, {∅} , {∅, {∅}}}

recursion
place one component inside another component of the same type

17 of 31

Recursion (3)

https://matthewjamestaylor.com/recursive-drawing

18 of 31

https://matthewjamestaylor.com/recursive-drawing

Recursion (4)

We hypothesize that FLN (faculty of language in the narrow sense)
only includes recursion and is the only uniquely human component of
the faculty of language.

M Hauser, N Chomsky and W Fitch (2002)
science.sciencemag.org/content/298/5598/1569

(2) a. The dog bit the cat [which chased the mouse [which died]]. (right)

b. [[the dog] ’s owner] ’s friend (left)

c. The mouse [the cat [the dog bit] chased] died. (center)

19 of 31

Reminder: Chomsky Hierarchy

Grammar Languages Production rules

Type-0 Recursively enumerable α→γ
Type-1 Context-sensitive αAβ→αγβ
Type-2 Context-free A→γ
Type-3 Regular A→a

A→aB

a ∈ N ; α, β ∈ (N ∪ Σ)∗, γ ∈ (N ∪ Σ)+

regular

context free

context sensitive

recursively enumerable
a language

20 of 31

Where can I get a grammar?

English Treebank

• Penn Treebank = ca. 50,000 sentences with associated trees

• Usual set-up: ca. 40,000 training sentences, ca. 2,400 test sentences

• Cut all trees into 2-level subtrees.

21 of 31

Probabilistic Context-Free Grammars

[...] Therefore the true logic for this world
is the calculus of probabilities, which takes
account of the magnitude of the probability
which is, or ought to be, in a reasonable man’s
mind.

Probabilistic CFGs

Probability of a tree t with rules A1 → β1, A2 → β2, ... is

p(t) =

n∏
i=1

q(Ai → βi)

where q(Ai → βi) is the probability for rule Ai → βi.

• When we expand Ai, how likely is it that we choose Ai → βi?

• For each nonterminal Ai,∑
β

q(Ai → β|Ai) = 1

• PCFG generates random derivations of CFG.

• Each event (expanding nonterminal by production rules) is statistically
independent of all the others.

22 of 31

An example (1)

S → NP VP 0.8
S → Aux NP VP 0.15
S → VP 0.05

NP → AdjP NP 0.2
NP → D N 0.7
NP → N 0.1

VP → VP AdvP 0.3
VP → V 0.2
VP → V NP 0.3
VP → V NP NP 0.2

AdvP → Adv 1.0

AdjP → Adj 1.0

Adj → colorless 0.4
Adj → green 0.6
N → ideas 1.0
V → sleep 1.0
Adv → furiously 1.0

23 of 31

An example (2)

S S→NP VP 0.8

⇒ NP VP NP→N 0.1
⇒ N VP N→ideas 1.0
⇒ ideas VP VP→VP AdvP 0.3
⇒ ideas VP AdvP VP→V 0.2
⇒ ideas V AdvP V→sleep 1.0
⇒ ideas sleep AdvP AdvP→Adv 1.0
⇒ ideas sleep Adv Adv→furiously 1.0

0.8× 0.1× 1.0× 0.3× 0.2× 1.0× 1.0× 1.0

24 of 31

An example (2)

S S→NP VP 0.8
⇒ NP VP NP→N 0.1

⇒ N VP N→ideas 1.0
⇒ ideas VP VP→VP AdvP 0.3
⇒ ideas VP AdvP VP→V 0.2
⇒ ideas V AdvP V→sleep 1.0
⇒ ideas sleep AdvP AdvP→Adv 1.0
⇒ ideas sleep Adv Adv→furiously 1.0

0.8× 0.1× 1.0× 0.3× 0.2× 1.0× 1.0× 1.0

24 of 31

An example (2)

S S→NP VP 0.8
⇒ NP VP NP→N 0.1
⇒ N VP N→ideas 1.0
⇒ ideas VP VP→VP AdvP 0.3
⇒ ideas VP AdvP VP→V 0.2
⇒ ideas V AdvP V→sleep 1.0
⇒ ideas sleep AdvP AdvP→Adv 1.0
⇒ ideas sleep Adv Adv→furiously 1.0

0.8× 0.1× 1.0× 0.3× 0.2× 1.0× 1.0× 1.0

24 of 31

An example (2)

S S→NP VP 0.8
⇒ NP VP NP→N 0.1
⇒ N VP N→ideas 1.0
⇒ ideas VP VP→VP AdvP 0.3
⇒ ideas VP AdvP VP→V 0.2
⇒ ideas V AdvP V→sleep 1.0
⇒ ideas sleep AdvP AdvP→Adv 1.0
⇒ ideas sleep Adv Adv→furiously 1.0

0.8× 0.1× 1.0× 0.3× 0.2× 1.0× 1.0× 1.0

24 of 31

Properties of PCFGs

• Assigns a probability to each parse-tree, allowed by the underlying CFG

• Say we have a sentence s, set of derivations for that sentence is T (s),
as defined by a CFG. Then a PCFG assigns a probability p(t) to each
member of T (s).

• We now have a Score function (probability) that can ranks trees.

• The most likely parse tree for a sentence s is

argmaxt∈T (s) p(t)

“correct” means more probable parse tree

“language” means set of grammatical sentences

25 of 31

Deriving a PCFG from a Treebank

Given a set of example trees (a treebank), the underlying CFG can simply
be all rules seen in the corpus

Maximum Likelihood Estimates

qML(A→ β) =
count(A→ β)

count(A)

The counts are taken from a training set of example trees.

If the training data is generated by a PCFG, then as the training data size
goes to infinity, the maximum-likelihood PCFG will converge to the same
distribution as the “true” PCFG.

26 of 31

Discriminative vs Generative

We have learned two probabilistic models:

• Log-linear: P (Y |X)

an example of discriminative model

• PCFG: P (X,Y)

an example of generative model

• Generative models can generate new data instances. It includes the
distribution of the data itself, and tells you how likely a given example
is.

• Discriminative models discriminate between different kinds of data
instances. A discriminative model just tells you how likely a label is for
a given instance.

27 of 31

Discriminative vs Generative

We have learned two probabilistic models:

• Log-linear: P (Y |X) an example of discriminative model

• PCFG: P (X,Y) an example of generative model

• Generative models can generate new data instances. It includes the
distribution of the data itself, and tells you how likely a given example
is.

• Discriminative models discriminate between different kinds of data
instances. A discriminative model just tells you how likely a label is for
a given instance.

27 of 31

Neural Parameterisation

Neural parameterisation

• Simple parameterisation of PCFG: q(Ai → βi) is a real number.

• Alternative neural parameterisation: q(Ai → βi) is a trainable NN.

Kim et al. (2019) https://aclanthology.org/P19-1228.pdf

q(A→ BC) =
exp(u⊤

BCwA)∑
B′C′ exp(u⊤

B′C′wA)

• A ∈ Σ, B,C ∈ Σ ∪N

• {wx|x ∈ Σ ∪N} and {uxy|x, y ∈ Σ ∪N}: the set of input symbol
embeddings for a grammar.

Compound PCFG

q(A→ BC; z) =
exp(u⊤

BC [wA; z])∑
B′C′ exp(u⊤

B′C′ [wA; z])

29 of 31

https://aclanthology.org/P19-1228.pdf

Grammar induction

• Children acquire their grammars in a more or less unsupervised manner.

• Grammar induction is a research task in computational linguistics with
the following research question: to what extent can the structure of
human language be distributionally identified?

• Recent progress: Applying neural parameterisation to PCFG and
estimate parameters in an unsupervised way.

30 of 31

Reading

D Jurafsky and J Martin. Speech and Language Processing.

• §17.1–§17.5, and §17.8. Context-free Grammars and Constituency
Parsing. Speech and Language Processing. D Jurafsky and J Martin.
https://web.stanford.edu/~jurafsky/slp3/17.pdf

31 of 31

https://web.stanford.edu/~jurafsky/slp3/17.pdf

	Phrase Structure
	Structured Prediction
	Context-Free Grammar
	Probabilistic Context-Free Grammars
	Neural Parameterisation
	Appendix

