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Words are organized into nested blocks

Lecture 5: Phrase Structure and Structured Prediction

1. Phrase structure

3. Structured prediction

4. Probabilistic Context-free grammars

5. Neural parameterisation



Phrase Structure



Interview of Noam Chomsky by Lex Fridman

(1) a. the guy who fixed the car very carefully packed his tools

b. very carefully, the guy who fixed the car packed his tools

c. *very carefully, the guy who fixed the car is tall

I think the deepest property of language
and puzzling property that’s been discovered
is what is sometimes called structure depen-
dence. [...] Linear closeness is an easy com-
putation, but here you’re doing a much more,
what looks like a more complex computation.

Noam Chomsky: Language, Cognition, and Deep Learning

○www.youtube.com/watch?v=cMscNuSUy0I
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Constituency (phrase structure)

The basic idea

Phrase structure organizes words into nested constituents, which can be
represented as a tree.
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Different structures, different meaning
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Results by a cool parser: http://erg.delph-in.net/logon
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Locality S
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Applications of parsing

Modern parsers are quite accurate

For some languages, automatic syntactic parsing is good enough to help in
a range of NLP tasks

• Machine translation

• Information extraction

• Grammar checking

• etc.

Translate “英格兰的经济发展” into English

英格兰 的 经济 发展

economic development of England

finite-state transducer?

5 of 31



Applications of parsing

Modern parsers are quite accurate

For some languages, automatic syntactic parsing is good enough to help in
a range of NLP tasks

• Machine translation

• Information extraction

• Grammar checking

• etc.

Translate “英格兰的经济发展” into English

英格兰 的 经济 发展

economic development of England

finite-state transducer?

5 of 31



Applications of parsing

Modern parsers are quite accurate

For some languages, automatic syntactic parsing is good enough to help in
a range of NLP tasks

• Machine translation

• Information extraction

• Grammar checking

• etc.

Translate “英格兰的经济发展” into English

英格兰 的 经济 发展

economic development of England

finite-state transducer?
5 of 31



An example: Tree-to-string transduction
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Structured Prediction



pre-lecture: watch this video
○www.youtube.com/watch?v=bjUwSHGsG9o
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Muhammad Li

Howard Who’s Muhammad Li?

Sheldon Muhammad is the most common first name in the world, Li,
the most common surname. As I didn’t know the answer, I
thought that gave me a mathematical edge.
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POS tagging and prediction

some yinkish dripners blorked quastofically into nindin with the pidibs

verb adv prep noun prep det noundet

classify

adj

classify

noun

classify classify classify classify classify classify classify classify
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Two perspectives ≈ Possible vs Probable
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[...] Therefore the true logic for this world
is the calculus of probabilities, which takes
account of the magnitude of the probability
which is, or ought to be, in a reasonable man’s
mind.
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Linguistic structure prediction

As a structured prediction problem

• Search space: Is this analysis possible? ▷CFG (today)

• Measurement: Is this analysis good? ▷PCFG (today)

y∗(x; θ ) = argmax
y ∈ Y(x)

Score(x,y)

• Decoding: find the analysis that obtains the highest score

• Parameter estimation: find good parameters
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Context-Free Grammar
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Formal grammars

Formally specify a grammar that can generate all and only the acceptable
sentences of a natural language.

A grammar G consists of the following components:

1. A finite set Σ of terminal symbols.

2. A finite set N of nonterminal symbols that is disjoint from Σ.

3. A distinguished nonterminal symbol that is the start symbol.

4. A finite set R of production rules, each rule of the form

(Σ ∪N)+ → (Σ ∪N)∗

Each production rule maps from one string of symbols to another.
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Context-Free Grammars

1 N : variables

2 Σ: terminals

3 R: productions
A→ (N ∪ Σ)∗

A ∈ N

4 S: START

13 of 31



A linguistic example (1)

N = {S,NP,VP,AdjP,AdvP} ∪
{N,Adj,Adv}

Σ = {colorless, green, ideas, sleep,
furiously}

R
S→NP VP NP→AdjP NP
VP→VP AdvP
VP→V NP→N
AdvP→Adv AdjP→Adj

Adj→colorless Adj→green
N→ideas V→sleep
Adv→furiously

S = S

We can derive the structure
of a string.

S ⇒ NP VP
⇒ N VP
⇒ ideas VP
⇒ ideas VP AdvP
⇒ ideas V AdvP
⇒ ideas sleep AdvP
⇒ ideas sleep Adv
⇒ ideas sleep furiously

S

VP

AdvP

Adv

furiously

VP

V

sleep

NP

N

Ideas
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A linguistic example (2)

We can define the language of a grammar by applying the productions.
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Recursion (1)

from Inception (https://www.imdb.com/title/tt1375666/)

recursion
place one component inside another component of the same type

16 of 31
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Recursion (2)

Natural numbers
• 0← ∅
• If n is a natural number, let n+ 1← n ∪ {n}

0 = ∅
1 = {0} = {∅}
2 = {0, 1} = {∅, {∅}}
3 = {0, 1, 2} = {∅, {∅} , {∅, {∅}}}

recursion
place one component inside another component of the same type
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Recursion (3)

https://matthewjamestaylor.com/recursive-drawing
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Recursion (4)

We hypothesize that FLN (faculty of language in the narrow sense)
only includes recursion and is the only uniquely human component of
the faculty of language.

M Hauser, N Chomsky and W Fitch (2002)
science.sciencemag.org/content/298/5598/1569

(2) a. The dog bit the cat [which chased the mouse [which died]]. (right)

b. [[the dog] ’s owner] ’s friend (left)

c. The mouse [the cat [the dog bit] chased] died. (center)
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Reminder: Chomsky Hierarchy

Grammar Languages Production rules

Type-0 Recursively enumerable α→γ
Type-1 Context-sensitive αAβ→αγβ
Type-2 Context-free A→γ
Type-3 Regular A→a

A→aB

a ∈ N ; α, β ∈ (N ∪ Σ)∗, γ ∈ (N ∪ Σ)+

regular

context free

context sensitive

recursively enumerable
a language
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Where can I get a grammar?

English Treebank

• Penn Treebank = ca. 50,000 sentences with associated trees

• Usual set-up: ca. 40,000 training sentences, ca. 2,400 test sentences

• Cut all trees into 2-level subtrees.
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Probabilistic Context-Free Grammars

[...] Therefore the true logic for this world
is the calculus of probabilities, which takes
account of the magnitude of the probability
which is, or ought to be, in a reasonable man’s
mind.



Probabilistic CFGs

Probability of a tree t with rules A1 → β1, A2 → β2, ... is

p(t) =

n∏
i=1

q(Ai → βi)

where q(Ai → βi) is the probability for rule Ai → βi.

• When we expand Ai, how likely is it that we choose Ai → βi?

• For each nonterminal Ai,∑
β

q(Ai → β|Ai) = 1

• PCFG generates random derivations of CFG.

• Each event (expanding nonterminal by production rules) is statistically
independent of all the others.
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An example (1)

S → NP VP 0.8
S → Aux NP VP 0.15
S → VP 0.05

NP → AdjP NP 0.2
NP → D N 0.7
NP → N 0.1

VP → VP AdvP 0.3
VP → V 0.2
VP → V NP 0.3
VP → V NP NP 0.2

AdvP → Adv 1.0

AdjP → Adj 1.0

Adj → colorless 0.4
Adj → green 0.6
N → ideas 1.0
V → sleep 1.0
Adv → furiously 1.0
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An example (2)

S S→NP VP 0.8

⇒ NP VP NP→N 0.1
⇒ N VP N→ideas 1.0
⇒ ideas VP VP→VP AdvP 0.3
⇒ ideas VP AdvP VP→V 0.2
⇒ ideas V AdvP V→sleep 1.0
⇒ ideas sleep AdvP AdvP→Adv 1.0
⇒ ideas sleep Adv Adv→furiously 1.0

0.8× 0.1× 1.0× 0.3× 0.2× 1.0× 1.0× 1.0

24 of 31
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Properties of PCFGs

• Assigns a probability to each parse-tree, allowed by the underlying CFG

• Say we have a sentence s, set of derivations for that sentence is T (s),
as defined by a CFG. Then a PCFG assigns a probability p(t) to each
member of T (s).

• We now have a Score function (probability) that can ranks trees.

• The most likely parse tree for a sentence s is

argmaxt∈T (s) p(t)

“correct” means more probable parse tree

“language” means set of grammatical sentences

25 of 31



Deriving a PCFG from a Treebank

Given a set of example trees (a treebank), the underlying CFG can simply
be all rules seen in the corpus

Maximum Likelihood Estimates

qML(A→ β) =
count(A→ β)

count(A)

The counts are taken from a training set of example trees.

If the training data is generated by a PCFG, then as the training data size
goes to infinity, the maximum-likelihood PCFG will converge to the same
distribution as the “true” PCFG.
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Discriminative vs Generative

We have learned two probabilistic models:

• Log-linear: P (Y |X)

an example of discriminative model

• PCFG: P (X,Y )

an example of generative model

• Generative models can generate new data instances. It includes the
distribution of the data itself, and tells you how likely a given example
is.

• Discriminative models discriminate between different kinds of data
instances. A discriminative model just tells you how likely a label is for
a given instance.
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Neural Parameterisation



Neural parameterisation

• Simple parameterisation of PCFG: q(Ai → βi) is a real number.

• Alternative neural parameterisation: q(Ai → βi) is a trainable NN.

Kim et al. (2019) https://aclanthology.org/P19-1228.pdf

q(A→ BC) =
exp(u⊤

BCwA)∑
B′C′ exp(u⊤

B′C′wA)

• A ∈ Σ, B,C ∈ Σ ∪N

• {wx|x ∈ Σ ∪N} and {uxy|x, y ∈ Σ ∪N}: the set of input symbol
embeddings for a grammar.

Compound PCFG

q(A→ BC; z) =
exp(u⊤

BC [wA; z])∑
B′C′ exp(u⊤

B′C′ [wA; z])
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Grammar induction

• Children acquire their grammars in a more or less unsupervised manner.

• Grammar induction is a research task in computational linguistics with
the following research question: to what extent can the structure of
human language be distributionally identified?

• Recent progress: Applying neural parameterisation to PCFG and
estimate parameters in an unsupervised way.
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Reading

D Jurafsky and J Martin. Speech and Language Processing.

• §17.1–§17.5, and §17.8. Context-free Grammars and Constituency
Parsing. Speech and Language Processing. D Jurafsky and J Martin.
https://web.stanford.edu/~jurafsky/slp3/17.pdf
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