Overview of Natural Language Processing Part II & ACS L390

Lecture 5: Phrase Structure and Structured Prediction

Weiwei Sun

Department of Computer Science and Technology University of Cambridge

Michaelmas 2024/25

Lecture 5: Phrase Structure and Structured Prediction

- 1. Phrase structure
- 3. Structured prediction
- 4. Probabilistic Context-free grammars
- 5. Neural parameterisation

Phrase Structure

Interview of Noam Chomsky by Lex Fridman

- (1) a. the guy who fixed the car very carefully packed his tools
 - b. very carefully, the guy who fixed the car packed his tools
 - c. *very carefully, the guy who fixed the car is tall

I think the deepest property of language and puzzling property that's been discovered is what is sometimes called structure dependence. [...] Linear closeness is an easy computation, but here you're doing a much more, what looks like a more complex computation.

Noam Chomsky: Language, Cognition, and Deep Learning @www.youtube.com/watch?v=cMscNuSUy0I

Constituency (phrase structure)

The basic idea

Phrase structure organizes words into *nested constituents*, which can be represented as a tree.

Different structures, different meaning

Results by a cool parser: http://erg.delph-in.net/logon

Applications of parsing

Modern parsers are quite accurate

For some languages, automatic syntactic parsing is good enough to help in a range of NLP tasks

- Machine translation
- Information extraction
- Grammar checking
- etc.

Applications of parsing

Modern parsers are quite accurate

For some languages, automatic syntactic parsing is good enough to help in a range of NLP tasks

- Machine translation
- Information extraction
- Grammar checking
- etc.

Translate "英格兰的经济发展" into English

Applications of parsing

Modern parsers are quite accurate

For some languages, automatic syntactic parsing is good enough to help in a range of NLP tasks

- Machine translation
- Information extraction
- Grammar checking
- etc.

Translate "英格兰的经济发展" into English

NP of NP

NP of NP NP of England ⊳R2 ⊳R1

NP of NP NP of England N N of England ⊳R2 ⊳R1 ⊳R3

NP of NP NP of England N N of England economic N of England R2
R1
R3
R4

NP of NP▷R2NP of England▷R1N N of England▷R3economic N of England▷R4economic development of England▷R5

Structured Prediction

pre-lecture: watch this video www.youtube.com/watch?v=bjUwSHGsG9o

Muhammad Li

Howard Who's Muhammad Li?

Sheldon Muhammad is the most common first name in the world, Li, the most common surname. As I didn't know the answer, I thought that gave me a mathematical edge.

POS tagging and prediction

POS tagging and prediction

POS tagging and prediction

Two perspectives \approx Possible vs Probable

[...] Therefore the true logic for this world is the calculus of probabilities, which takes account of the magnitude of the probability which is, or ought to be, in a reasonable man's mind.

As a structured prediction problem

- Search space: Is this analysis possible?
- Measurement: Is this analysis good?

▷CFG (today)▷PCFG (today)

$$\mathbf{y}^*(\mathbf{x}; \boldsymbol{\theta}) = \arg \max \left[\mathbf{y} \in \mathcal{Y}(\mathbf{x}) \right]$$
 Score(\mathbf{x}, \mathbf{y})

- Decoding: find the analysis that obtains the highest score
- Parameter estimation: find good parameters

As a structured prediction problem

- Search space: Is this analysis possible?
- Measurement: Is this analysis *good*? ▷PCFG (today)

$$\mathbf{y}^*(\mathbf{x}; \boldsymbol{\theta}) = \arg \max \left[\begin{array}{c} \mathbf{y} \\ \mathbf{y} \in \mathcal{Y}(\mathbf{x}) \end{array} \right] \operatorname{Score}(\mathbf{x}, \mathbf{y})$$

- Decoding: find the analysis that obtains the highest score
- Parameter estimation: find good parameters

 \triangleright CFG (today)

As a structured prediction problem

- Search space: Is this analysis possible?
- Measurement: Is this analysis good?
 PCFG (today)

$$\mathbf{y}^*(\mathbf{x}; \boldsymbol{\theta}) = \arg \max \left[\begin{array}{c} \mathbf{y} \in \mathcal{Y}(\mathbf{x}) \\ \mathbf{y} \in \mathcal{Y}(\mathbf{x}) \end{array} \right]$$
 Score(\mathbf{x}, \mathbf{y})

- Decoding: find the analysis that obtains the highest score
- Parameter estimation: find good parameters

 \triangleright CFG (today)

As a structured prediction problem

- Search space: Is this analysis possible?
- Measurement: Is this analysis good?

▷CFG (today)▷PCFG (today)

$$\mathbf{y}^{*}(\mathbf{x}; \boldsymbol{\theta}) = \arg \max_{\mathbf{y} \in \mathcal{Y}(\mathbf{x})} \operatorname{SCORE}(\mathbf{x}, \mathbf{y})$$

- Decoding: find the analysis that obtains the highest score
- Parameter estimation: find good parameters

As a structured prediction problem

- Search space: Is this analysis possible?
- Measurement: Is this analysis good?

▷CFG (today)▷PCFG (today)

$$\mathbf{y}^{*}(\mathbf{x}; \boldsymbol{\theta}) = \arg \max_{\mathbf{y} \in \mathcal{Y}(\mathbf{x})} \operatorname{SCORE}(\mathbf{x}, \mathbf{y})$$

- Decoding: find the analysis that obtains the highest score
- Parameter estimation: find good parameters

Context-Free Grammar

Formal grammars

Formally specify a grammar that can generate all and only the acceptable sentences of a natural language.

Formal grammars

Formally specify a grammar that can generate all and only the acceptable sentences of a natural language.

A grammar G consists of the following components:

- 1. A finite set $\boldsymbol{\Sigma}$ of terminal symbols.
- 2. A finite set N of nonterminal symbols that is disjoint from Σ .
- 3. A distinguished nonterminal symbol that is the START symbol.
- 4. A finite set R of production rules, each rule of the form

 $(\Sigma \cup N)^+ \to (\Sigma \cup N)^*$

Each production rule maps from one string of symbols to another.

Context-Free Grammars

- 1 N: variables
- **2** Σ : terminals
- **3** R: productions

 $A \to (N \cup \Sigma)^*$

 $A \in N$

4 S: **START**

 $N = \{\mathsf{S}, \mathsf{NP}, \mathsf{VP}, \mathsf{AdjP}, \mathsf{AdvP}\} \cup \\ \{\mathsf{N}, \mathsf{Adj}, \mathsf{Adv}\}$

 $\Sigma = \{ \textit{colorless, green, ideas, sleep, furiously} \}$

R	
$S \rightarrow NP VP$	$NP \rightarrow AdjP NP$
$VP \rightarrow VP AdvP$	
$VP \rightarrow V$	$NP \rightarrow N$
$AdvP{ o}Adv$	$AdjP{ o}Adj$
Adj <i>→colorless</i>	Adj <i>→green</i>
N <i>→ideas</i>	$V \rightarrow sleep$
Adv→ <i>furiously</i>	

 $S=\mathsf{S}$

```
N = \{\mathsf{S}, \mathsf{NP}, \mathsf{VP}, \mathsf{AdjP}, \mathsf{AdvP}\} \cup \\ \{\mathsf{N}, \mathsf{Adj}, \mathsf{Adv}\}
```

```
\Sigma = \{ \textit{colorless, green, ideas, sleep, furiously} \}
```

R	
$S \rightarrow NP VP$	$NP \rightarrow AdjP \ NP$
$VP \rightarrow VP AdvP$	
$VP \rightarrow V$	$NP \rightarrow N$
$AdvP{ o}Adv$	AdjP→Adj
Adj <i>→colorless</i>	Adj <i>→green</i>
N <i>→ideas</i>	V→sleep
Adv→ <i>furiously</i>	

 $S=\mathsf{S}$

We can derive the structure of a string.

 $N = \{\mathsf{S}, \mathsf{NP}, \mathsf{VP}, \mathsf{AdjP}, \mathsf{AdvP}\} \cup \\ \{\mathsf{N}, \mathsf{Adj}, \mathsf{Adv}\}$

 $\Sigma = \{ \textit{colorless, green, ideas, sleep, furiously} \}$

 $\begin{array}{c|c} R \\ \hline S \rightarrow \mathsf{NP} \ \mathsf{VP} \\ \mathsf{VP} \rightarrow \mathsf{VP} \ \mathsf{AdvP} \\ \mathsf{VP} \rightarrow \mathsf{VP} \ \mathsf{AdvP} \\ \mathsf{AdvP} \rightarrow \mathsf{Adv} \\ \hline \mathsf{AdjP} \rightarrow \mathsf{Ady} \\ \hline \mathsf{Adj} \rightarrow \textit{colorless} \\ \mathsf{N} \rightarrow \textit{ideas} \\ \mathsf{Adv} \rightarrow \textit{furiously} \\ \hline \end{array}$

 $S=\mathsf{S}$

We can derive the structure of a string.

 $\mathsf{S} \Rightarrow \mathsf{NP} \mathsf{VP}$

 $N = \{\mathsf{S}, \mathsf{NP}, \mathsf{VP}, \mathsf{AdjP}, \mathsf{AdvP}\} \cup \\ \{\mathsf{N}, \mathsf{Adj}, \mathsf{Adv}\}$

 $\Sigma = \{ \textit{colorless, green, ideas, sleep, furiously} \}$

 $\begin{array}{c|c} R \\ \hline S \rightarrow \mathsf{NP} \ \mathsf{VP} \\ \mathsf{VP} \rightarrow \mathsf{VP} \ \mathsf{AdvP} \\ \mathsf{VP} \rightarrow \mathsf{VP} \ \mathsf{AdvP} \\ \mathsf{AdvP} \rightarrow \mathsf{Adv} \\ \hline \mathsf{AdjP} \rightarrow \mathsf{Adv} \\ \hline \mathsf{AdjP} \rightarrow \mathsf{Adj} \\ \hline \mathsf{Adj} \rightarrow \textit{colorless} \\ \mathsf{N} \rightarrow \textit{ideas} \\ \mathsf{Adv} \rightarrow \textit{furiously} \\ \hline \end{array}$

 $S=\mathsf{S}$

We can derive the structure of a string. $S \Rightarrow NP VP$ $\Rightarrow N VP$

 $N = \{\mathsf{S}, \mathsf{NP}, \mathsf{VP}, \mathsf{AdjP}, \mathsf{AdvP}\} \cup \\ \{\mathsf{N}, \mathsf{Adj}, \mathsf{Adv}\}$

 $\Sigma = \{ \textit{colorless, green, ideas, sleep, furiously} \}$

$R_{$	
$S \rightarrow NP VP$	$NP \rightarrow AdjP NP$
$VP \rightarrow VP AdvP$	
$VP \rightarrow V$	$NP \rightarrow N$
$AdvP{ o}Adv$	AdjP→Adj
Adj <i>→colorless</i>	Adj <i>→green</i>
N <i>→ideas</i>	$V \rightarrow sleep$
Adv→ <i>furiously</i>	

We can derive the structure of a string.

- ${\rm S} \ \Rightarrow {\sf NP} \ {\sf VP}$
 - $\Rightarrow \mathsf{N} \; \mathsf{VP}$
 - $\Rightarrow \mathsf{ideas} \; \mathsf{VP}$
 - \Rightarrow ideas VP AdvP
 - $\Rightarrow \mathsf{ideas}~\mathsf{V}~\mathsf{Adv}\mathsf{P}$
 - $\Rightarrow \mathsf{ideas} \ \mathsf{sleep} \ \mathsf{AdvP}$
 - $\Rightarrow \mathsf{ideas} \ \mathsf{sleep} \ \mathsf{Adv}$
 - $\Rightarrow \mathsf{ideas} \ \mathsf{sleep} \ \mathsf{furiously}$

 $S=\mathsf{S}$

 $N = \{\mathsf{S}, \mathsf{NP}, \mathsf{VP}, \mathsf{AdjP}, \mathsf{AdvP}\} \cup \\ \{\mathsf{N}, \mathsf{Adj}, \mathsf{Adv}\}$

 $\Sigma = \{ \textit{colorless, green, ideas, sleep, furiously} \}$

$R_{$	
$S \rightarrow NP VP$	$NP \rightarrow AdjP \ NP$
$VP \rightarrow VP AdvP$	
$VP \rightarrow V$	$NP \rightarrow N$
$AdvP{ o}Adv$	AdjP→Adj
Adj <i>→colorless</i>	Adj <i>→green</i>
N <i>→ideas</i>	V→sleep
Adv→ <i>furiously</i>	

 $S=\mathsf{S}$

We can derive the structure of a string.

- $\mathsf{S} \Rightarrow \mathsf{NP} \mathsf{VP}$
 - $\Rightarrow \mathsf{N} \; \mathsf{VP}$
 - $\Rightarrow \mathsf{ideas} \; \mathsf{VP}$
 - \Rightarrow ideas VP AdvP
 - $\Rightarrow \mathsf{ideas}~\mathsf{V}~\mathsf{Adv}\mathsf{P}$
 - $\Rightarrow \mathsf{ideas} \ \mathsf{sleep} \ \mathsf{AdvP}$
 - \Rightarrow ideas sleep Adv
 - $\Rightarrow \mathsf{ideas} \ \mathsf{sleep} \ \mathsf{furiously}$

We can define the language of a grammar by applying the productions.

Recursion (1)

from Inception (https://www.imdb.com/title/tt1375666/)

recursion

place one component inside another component of the same type

Recursion (2)

Natural numbers

- $0 \leftarrow \emptyset$
- If n is a natural number, let $n+1 \leftarrow n \cup \{n\}$

$$0 = \emptyset$$

$$1 = \{0\} = \{\emptyset\}$$

$$2 = \{0, 1\} = \{\emptyset, \{\emptyset\}\}$$

$$3 = \{0, 1, 2\} = \{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}$$

recursion place one component inside another component of the same type

Recursion (3)

https://matthewjamestaylor.com/recursive-drawing

Recursion (4)

We hypothesize that FLN (faculty of language in the narrow sense) only includes recursion and is the only uniquely human component of the faculty of language.

M Hauser, N Chomsky and W Fitch (2002)

science.sciencemag.org/content/298/5598/1569

- (2) a. The dog bit the cat [which chased the mouse [which died]]. (right)
 - b. [[the dog] 's owner] 's friend
 - c. The mouse [the cat [the dog bit] chased] died. (center)

(left)

Reminder: Chomsky Hierarchy

Grammar	Languages	Production rules
Type-0	Recursively enumerable	$\alpha \rightarrow \gamma$
Type-1	Context-sensitive	$\alpha A\beta \rightarrow \alpha \gamma \beta$
Type-2	Context-free	$A \rightarrow \gamma$
Type-3	Regular	$A {\rightarrow} a$
		$A {\rightarrow} aB$

 $a \in N$; $\alpha, \beta \in (N \cup \Sigma)^*, \gamma \in (N \cup \Sigma)^+$

Where can I get a grammar?

English Treebank

- Penn Treebank = ca. 50,000 sentences with associated trees
- Usual set-up: ca. 40,000 training sentences, ca. 2,400 test sentences
- Cut all trees into 2-level subtrees.

Probabilistic Context-Free Grammars

[...] Therefore the true logic for this world is the calculus of probabilities, which takes account of the magnitude of the probability which is, or ought to be, in a reasonable man's mind.

Probabilistic CFGs

Probability of a tree t with rules $A_1 \rightarrow \beta_1, A_2 \rightarrow \beta_2, \dots$ is

$$p(t) = \prod_{i=1}^{n} q(A_i \to \beta_i)$$

where $q(A_i \rightarrow \beta_i)$ is the probability for rule $A_i \rightarrow \beta_i$.

- When we expand A_i , how likely is it that we choose $A_i \rightarrow \beta_i$?
- For each nonterminal A_i,

$$\sum_{\beta} q(A_i \to \beta | A_i) = 1$$

- PCFG generates random derivations of CFG.
- Each event (expanding nonterminal by production rules) is statistically independent of all the others.

S	\rightarrow	NP VP	0.8
S	\rightarrow	Aux NP VP	0.15
S	\rightarrow	VP	0.05
NP	\rightarrow	AdjP NP	0.2
NP	\rightarrow	DN	0.7
NP	\rightarrow	Ν	0.1
VP	\rightarrow	VP AdvP	0.3
VP	\rightarrow	V	0.2
VP	\rightarrow	V NP	0.3
VP	\rightarrow	V NP NP	0.2
AdvP	\rightarrow	Adv	1.0
AdjP	\rightarrow	Adj	1.0

Adj	\rightarrow	colorless	0.4	
Adj	\rightarrow	green	0.6	
N	\rightarrow	ideas	1.0	
V	\rightarrow	sleep	1.0	
Adv	\rightarrow	furiously	1.0	

S S \rightarrow NP VP 0.8

	S	$S \rightarrow NP VP$	0.8
\Rightarrow	NP VP	$NP \rightarrow N$	0.1
\Rightarrow	N VP	$N { ightarrow} ideas$	1.0
\Rightarrow	ideas VP	$VP{\rightarrow}VP~AdvP$	0.3
\Rightarrow	ideas VP AdvP	$VP \rightarrow V$	0.2
\Rightarrow	ideas V AdvP	$V { ightarrow} sleep$	1.0
\Rightarrow	ideas sleep AdvP	$AdvP{ o}Adv$	1.0
\Rightarrow	ideas sleep Adv	Adv <i>→furiously</i>	1.0

	S	$S \rightarrow NP VP$	0.8
\Rightarrow	NP VP	$NP \rightarrow N$	0.1
\Rightarrow	N VP	$N { ightarrow} ideas$	1.0
\Rightarrow	ideas VP	$VP{\rightarrow}VP~AdvP$	0.3
\Rightarrow	ideas VP AdvP	$VP \rightarrow V$	0.2
\Rightarrow	ideas V AdvP	$V { ightarrow} sleep$	1.0
\Rightarrow	ideas sleep AdvP	$AdvP{ o}Adv$	1.0
\Rightarrow	ideas sleep Adv	Adv <i>→furiously</i>	1.0

 $0.8\times0.1\times1.0\times0.3\times0.2\times1.0\times1.0\times1.0$

Properties of PCFGs

- Assigns a probability to each parse-tree, allowed by the underlying CFG
- Say we have a sentence s, set of derivations for that sentence is $\mathcal{T}(s)$, as defined by a CFG. Then a PCFG assigns a probability p(t) to each member of $\mathcal{T}(s)$.
- We now have a S_{CORE} function (probability) that can ranks trees.
- The most likely parse tree for a sentence s is

 $\overline{\operatorname{arg\,max}_{t\in\mathcal{T}(s)}p(t)}$

"correct" means more probable parse tree "language" means set of grammatical sentences

Deriving a PCFG from a Treebank

Given a set of example trees (a treebank), the underlying CFG can simply be all rules seen in the corpus

Maximum Likelihood Estimates

$$q_{ML}(A \to \beta) = \frac{\text{COUNT}(A \to \beta)}{\text{COUNT}(A)}$$

The counts are taken from a training set of example trees.

If the training data is generated by a PCFG, then as the training data size goes to infinity, the maximum-likelihood PCFG will converge to the same distribution as the "true" PCFG.

Discriminative vs Generative

We have learned two probabilistic models:

- Log-linear: P(Y|X)
- PCFG: P(X, Y)
- Generative models can generate new data instances. It includes the distribution of the data itself, and tells you how likely a given example is.
- Discriminative models discriminate between different kinds of data instances. A discriminative model just tells you how likely a label is for a given instance.

Discriminative vs Generative

We have learned two probabilistic models:

- Log-linear: P(Y|X) an example of discriminative model
- PCFG: P(X,Y) an example of generative model
- Generative models can generate new data instances. It includes the distribution of the data itself, and tells you how likely a given example is.
- Discriminative models discriminate between different kinds of data instances. A discriminative model just tells you how likely a label is for a given instance.

Neural Parameterisation

Neural parameterisation

- Simple parameterisation of PCFG: $q(A_i \rightarrow \beta_i)$ is a real number.
- Alternative neural parameterisation: $q(A_i \rightarrow \beta_i)$ is a trainable NN.

Kim et al. (2019) https://aclanthology.org/P19-1228.pdf

$$q(A \to BC) = \frac{\exp(\boldsymbol{u}_{BC}^{\top} \boldsymbol{w}_A)}{\sum_{B'C'} \exp(\boldsymbol{u}_{B'C'}^{\top} \boldsymbol{w}_A)}$$

•
$$A \in \Sigma$$
, $B, C \in \Sigma \cup N$

• $\{w_x | x \in \Sigma \cup N\}$ and $\{u_{xy} | x, y \in \Sigma \cup N\}$: the set of input symbol embeddings for a grammar.

Compound PCFG

$$q(A \to BC; \boldsymbol{z}) = \frac{\exp(\boldsymbol{u}_{BC}^{\top}[\boldsymbol{w}_{A}; \boldsymbol{z}])}{\sum_{B'C'} \exp(\boldsymbol{u}_{B'C'}^{\top}[\boldsymbol{w}_{A}; \boldsymbol{z}])}$$

Grammar induction

- Children acquire their grammars in a more or less unsupervised manner.
- Grammar induction is a research task in computational linguistics with the following research question: to what extent can the structure of human language be distributionally identified?
- Recent progress: Applying neural parameterisation to PCFG and estimate parameters in an unsupervised way.

Reading

D Jurafsky and J Martin. Speech and Language Processing.

• §17.1–§17.5, and §17.8. Context-free Grammars and Constituency Parsing. Speech and Language Processing. D Jurafsky and J Martin. https://web.stanford.edu/~jurafsky/slp3/17.pdf