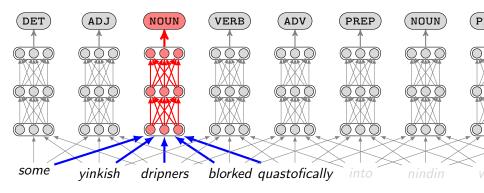
Overview of Natural Language Processing Part II & ACS L390

Gradient Descent and Neural Nets

Weiwei Sun

Department of Computer Science and Technology University of Cambridge

Michaelmas 2024/25



Gradient Descent and Neural Nets

- 1. Gradient Descent
- 2. Feedforward Neural Networks

Gradient Descent

Supervised learning

Assume there is a good annotated corpus

$$\mathcal{D} = \left\{ (x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(l)}, y^{(l)}) \right\}$$

How can we get a good parameter vector?

Maximum-Likelihood Estimation

 $\hat{\theta} = \arg\max L(\theta)$

where $L(\theta)$ is the log-likelihood of observing the data \mathcal{D} :

$$L(\theta) = \sum_{i=1}^{l} \log p(y^{(i)}|x^{(i)};\theta)$$

Gradient Descent/Ascent

In general, finding a minimum/maximum is hard.

However, a simple idea that often works:

- Initialise θ with some value
- Iteratively improve θ

The derivative tells us whether to increase or decrease (but doesn't tell us how much to increase/decrease by):

$$\theta^{[t+1]} = \theta^{[t]} + \beta \frac{dL}{d\theta} (\theta^{[t]})$$

Gradient Descent for the Log-Linear Model

Assume we have a *parameter vector* θ .

$$p(y|x;\theta) = \frac{\exp(\theta^{\top} f(x,y))}{\sum_{y' \in \mathcal{Y}} \exp(\theta^{\top} f(x,y'))}$$

i.e.

 $p(y|x;\theta) \propto \exp(\theta^{\top} f(x,y))$

$$L(\theta) = \sum_{i=1}^{l} \log p(y^{(i)} | x^{(i)}; \theta)$$

= $\sum_{i=1}^{l} \left(\theta^{\top} f(x^{(i)}, y^{(i)}) - \log \sum_{y' \in \mathcal{Y}} \exp(\theta^{\top} f(x^{(i)}, y')) \right)$

Gradient Descent for the Log-Linear Model

$$L(\theta) = \sum_{i=1}^{l} \left(\theta^{\top} f(x^{(i)}, y^{(i)}) - \log \sum_{y' \in \mathcal{Y}} \exp(\theta^{\top} f(x^{(i)}, y')) \right)$$

Calculating gradients (chain rule)

$$\frac{dL}{d\theta_k} = \sum_{i=1}^l \left(f_k(x^{(i)}, y^{(i)}) - \frac{\sum_{y' \in \mathcal{Y}} \left(\exp(\theta^\top f(x^{(i)}, y')) f_k(x^{(i)}, y') \right)}{\sum_{y^* \in \mathcal{Y}} \exp(\theta^\top f(x^{(i)}, y^*))} \right) \\
= \sum_{i=1}^l f_k(x^{(i)}, y^{(i)}) - \sum_{i=1}^l \sum_{y' \in \mathcal{Y}} f_k(x^{(i)}, y') \frac{\exp(\theta^\top f(x^{(i)}, y'))}{\sum_{y^* \in \mathcal{Y}} \exp(\theta^\top f(x^{(i)}, y^*))}$$

Gradient Descent for the Log-Linear Model

$$L(\boldsymbol{\theta}) = \sum_{i=1}^{l} \left(\boldsymbol{\theta}^{\top} f(\boldsymbol{x}^{(i)}, \boldsymbol{y}^{(i)}) - \log \sum_{\boldsymbol{y}' \in \mathcal{Y}} \exp(\boldsymbol{\theta}^{\top} f(\boldsymbol{x}^{(i)}, \boldsymbol{y}')) \right)$$

Calculating gradients (chain rule)

$$\begin{aligned} \frac{dL}{d\theta_k} &= \sum_{i=1}^l \left(f_k(x^{(i)}, y^{(i)}) - \frac{\sum_{y' \in \mathcal{Y}} \left(\exp(\theta^\top f(x^{(i)}, y')) f_k(x^{(i)}, y') \right)}{\sum_{y^* \in \mathcal{Y}} \exp(\theta^\top f(x^{(i)}, y^*))} \right) \\ &= \sum_{i=1}^l f_k(x^{(i)}, y^{(i)}) - \sum_{i=1}^l \sum_{y' \in \mathcal{Y}} f_k(x^{(i)}, y') \frac{\exp(\theta^\top f(x^{(i)}, y'))}{\sum_{y^* \in \mathcal{Y}} \exp(\theta^\top f(x^{(i)}, y^*))} \\ &= \sum_{i=1}^l f_k(x^{(i)}, y^{(i)}) - \sum_{i=1}^l \sum_{y' \in \mathcal{Y}} f_k(x^{(i)}, y') p(y'|x^{(i)}; \theta) \\ &= \underbrace{\sum_{i=1}^l f_k(x^{(i)}, y^{(i)})}_{expected counts} - \underbrace{\sum_{i=1}^l f_k(x^{(i)}, y^{(i)})}_{expected counts} \end{aligned}$$

Gradient Descent: Algorithm Maximize $L(\theta)$ where

$$\frac{dL}{d\theta_k} = \underbrace{\sum_{i=1}^l f_k(x^{(i)}, y^{(i)})}_{empirical \ counts} - \underbrace{\sum_{i=1}^l \sum_{y' \in \mathcal{Y}} f_k(x^{(i)}, y') p(y'|x^{(i)}; \theta)}_{expected \ counts}$$

1 Initialize
$$\theta^{[0]} \leftarrow 0$$

2 for t = 1, ...

3 calculate
$$\Delta = \frac{dL(\theta^{\lfloor t-1 \rfloor})}{d\theta}$$

4 calculate $\beta_* = \arg \max_{\beta} L(\theta + \beta \Delta)$

 \triangleright line search

5 **update** $\theta^{[t]} \leftarrow \theta^{[t-1]} + \beta_* \Delta$

Gradient Descent: Algorithm Maximize $L(\theta)$ where

$$\frac{dL}{d\theta_k} = \underbrace{\sum_{i=1}^l f_k(x^{(i)}, y^{(i)})}_{empirical \ counts} - \underbrace{\sum_{i=1}^l \sum_{y' \in \mathcal{Y}} f_k(x^{(i)}, y') p(y'|x^{(i)}; \theta)}_{expected \ counts}$$

1 Initialize
$$\theta^{[0]} \leftarrow 0$$

2 for t = 1, ...

3 calculate
$$\Delta = \frac{dL(\theta^{[t-1]})}{d\theta}$$

4 calculate
$$\beta_* = \arg \max_{\beta} L(\theta + \beta \Delta)$$

 \triangleright line search

5 **update** $\theta^{[t]} \leftarrow \theta^{[t-1]} + \beta_* \Delta$

Challenges

- Go through every training sample to get Δ ;
- Line search is another non-trival optimisation problem

Stochastic Gradient Descent

$$L(\theta) = \sum_{i=1}^{l} \log p(y^{(i)}|x^{(i)};\theta)$$

- Randomly use one or several training samples to get a suboptimal gradient $\Delta^\prime;$
- Fix β .

Recap: about linear combination

. .

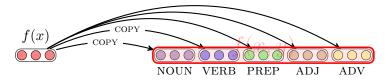
 $\theta^\top f(x,y)$ is a linear combination of $\theta.$ That is why a log-linear model is called a linear classifier.

vote for yes

Questions

Can we automate the design of features?

Is linear combination justified?

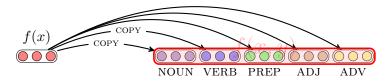


A simple way to define f(x, y) based on f(x) is "copy". We assumed that θ and f(x, y) have DK dimensions:

- *D* number of input features
- *K* number of output classes

So we can also view θ as comprising K vectors with D dimensions:

 $p(y|x;\theta) \propto \exp(\theta_y^{\top} f(x))$

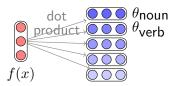


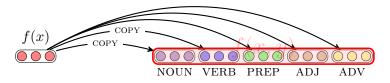
A simple way to define f(x,y) based on f(x) is "copy". We assumed that θ and f(x,y) have DK dimensions:

- *D* number of input features
- *K* number of output classes

So we can also view θ as comprising K vectors with D dimensions:

 $p(y|x;\theta) \propto \exp(\theta_y^{\top} f(x))$



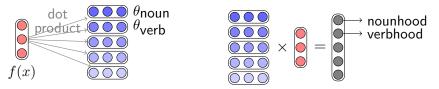


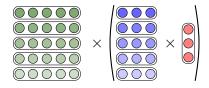
A simple way to define f(x,y) based on f(x) is "copy". We assumed that θ and f(x,y) have DK dimensions:

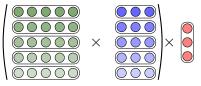
- *D* number of input features
- *K* number of output classes

So we can also view θ as comprising K vectors with D dimensions:

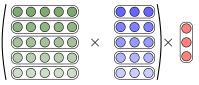
 $p(y|x;\theta) \propto \exp(\theta_y^{\top} f(x))$





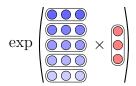


Oops! The combined transformation is linear!

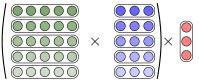


Oops! The combined transformation is linear!

Introduce some non-linearity

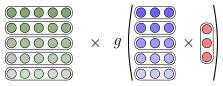


 \exp/g is applied component-wise (to each dimension separately)



Oops! The combined transformation is linear!

Introduce some non-linearity



 \exp/g is applied component-wise (to each dimension separately)

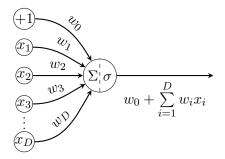
Think about multi-class classification:

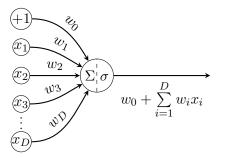
- *D* number of features (input)
- *K* number of classes (output)
- \mathbf{x} the input feature vector

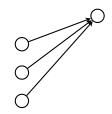
Think about a particular class, say y_k . We describe the "friendship" between x and y_k in the following way:

$$score_function(x, y_k) = w_0 + \sum_{i=1}^D w_i x_i$$

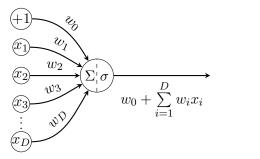
where w measures how much each feature w_i contributes to y_k .



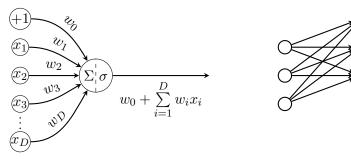




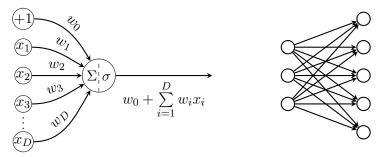
For each class y_k , we do the same thing.



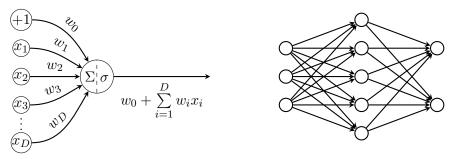
For each class y_k , we do the same thing. Again



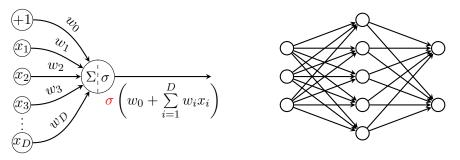
For each class y_k , we do the same thing. Again and again



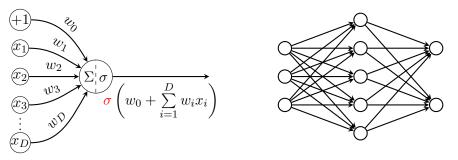
For each class y_k , we do the same thing. Again and again and again. This is called perceptron, which was invented by Frank Rosenblatt in 1958.



For each class y_k , we do the same thing. Again and again and again. This is called perceptron, which was invented by Frank Rosenblatt in 1958. Things will be much more fun if we have a stack of perceptrons.



For each class y_k , we do the same thing. Again and again and again. This is called perceptron, which was invented by Frank Rosenblatt in 1958. Things will be much more fun if we have a stack of perceptrons. Oops, must add something... Sigmoid $\sigma(x) = \frac{1}{1+e^{-x}}$ Otherwise, simple matrix multiplication.



For each class y_k , we do the same thing. Again and again and again. This is called perceptron, which was invented by Frank Rosenblatt in 1958. Things will be much more fun if we have a stack of perceptrons. Oops, must add something...

Sigmoid $\sigma(x) = \frac{1}{1+e^{-x}}$

Otherwise, simple matrix multiplication. Now you can do non-linear classification.

A feedforward neural network is a composition of simple functions:

- 1 layer: $\exp(W_1 x)$ \triangleright log-linear model
- 2 layers: $\exp(W_2g(W_1x))$

• . . .

- 3 layers: $\exp(W_3g(W_2g(W_1x)))$
- 4 layers: $\exp(W_4g(W_3g(W_2g(W_1x))))$

Both exp and g are applied component-wise (to each dimension separately)

A feedforward neural network is a composition of simple functions:

- 1 layer: $\exp(W_1 x)$ \triangleright log-linear model
- 2 layers: $\exp(W_2g(W_1x))$

•

- 3 layers: $\exp(W_3g(W_2g(W_1x)))$
- 4 layers: $\exp(W_4g(W_3g(W_2g(W_1x))))$

Both exp and g are applied component-wise (to each dimension separately)

The activation function g should be non-linear, e.g.:

- Rectified linear unit: ReLU(z) = max(0, z)
- Hyperbolic tangent: $tanh(z) = \frac{e^{2z}-1}{e^{2z}+1}$
- Sigmoid: $\sigma(z) = \frac{1}{1+e^{-z}}$

Gradient Descent for Neural Nets

Assume there is a good annotated corpus:

$$\mathcal{D} = \left\{ (x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(l)}, y^{(l)}) \right\}$$

Aim to maximise the log-likelihood (also called "cross entropy"):

$$L(\theta) = \sum_{i=1}^{l} \log p(y^{(i)} | x^{(i)}; \theta)$$

Gradient Descent for Neural Nets

Assume there is a good annotated corpus:

$$\mathcal{D} = \left\{ (x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(l)}, y^{(l)}) \right\}$$

Aim to maximise the log-likelihood (also called "cross entropy"):

$$L(\theta) = \sum_{i=1}^{l} \log p(y^{(i)}|x^{(i)};\theta)$$

 θ now contains parameters from many layers, but we can still use gradient descent:

- Backpropagation: efficient application of chain rule
- Iterate many times over training set

Reading

- D Jurafsky and J Martin. Speech and Language Processing Chapter 6. web.stanford.edu/~jurafsky/slp3/6.pdf
- * Essence of linear algebra www.youtube.com/watch?v=fNk_zzaMoSs&list= PLZHQObOWTQDPD3MizzM2xVFitgF8hE_ab