Lecture 9: Scope

L98: Introduction to Computational Semantics

Weiwei Sun

Department of Computer Science and Technology
University of Cambridge

Michaelmas 2024 /25

Every cat loves a cat.

Lecture 9: Scope

1. What is scope?

2. Type-driven analysis
3. Generalised quantifiers

What Is Scope?

Scope

Va(cat'(x) — Jy(cat'(y) A love'(z,y)))
Jy(cat'(y) A Va(cat'(z) — love'(z,y)))

Scope is an effect in syntax and semantics

® where a scopal lexical item casts its semantic effect over a particular
part of the clause or phrase

® the entire part of the clause is then said to be in the scope of the scopal
element

1 of 20

Types of scope

negative scope

modal scope

“only" scope

comparative scope

contrastive scope (rather than)
hypothetical scope

attributive scope (she said that. ..

quotation scope (so-called. . .)

“Only" scope

(1)

a. Kim loved her cats.
b. Only Kim loved her cats.
c. Kim only loved her cats.

d. Kim loved only her cats.

2 of 20

How to identify scope in graph?

S/PP

Semantic graphs are not hierarchical, therefore we can't use a single node
to identify scope.

3 of 20

Syntax—semantics mismatch

(2) Kim loves every cat >V (cat'(z) — love'(kim', z))
S(loves) (V, =)
NP(Kim) VP(loves) x cat’ love’
\
NV N /\
Kim loves NP(cat) x kim' =z
oer \
every NP
|
N
cat

An alternative analysis of noun phrases: DET is the syntactic head.

Syntax—semantics mismatch

(2) Kim loves every cat >V (cat'(z) — love'(kim', z))
S(loves) (V, =)
NP(Kim) VP(loves) T cat’ love’
\ R
N \//\ ”' /\
Kim loves NP(cat),-” x kim' =z
DET

every NP

|

N

cat

An alternative analysis of noun phrases: DET is the syntactic head.

Syntax—semantics mismatch

(2) Kim loves every cat >V (cat'(z) — love'(kim', z))
S(loves) (V, =)
NP(Kim) . . _VP(loves) T cat’ love’
TN —— L’
| V/>\ el J /\
Kim loves NP(cat),-” ™" kim' x
DET
every NP
|
N
cat

An alternative analysis of noun phrases: DET is the syntactic head.

Syntax—semantics mismatch

(2) Kim loves every cat >V (cat'(z) — love'(kim', z))
S(loves) . __ (V, =)
NP(Kim) _._VP(loves) 7 cat” ™" love
TN —— L’
| V/>\ el J /\
Kim loves NP(cat),-” ™" kim' x
DET
every NP
|
N
cat

An alternative analysis of noun phrases: DET is the syntactic head.

4 of 20

Three types of graphs

Abstract Meaning Representation

(be—located—at—Qi)
ARGO ARG1

quant

every

A computer is on every desk.

5 of 20

Three types of graphs

Abstract Meaning Representation

scope

ARG1 p':d ARGO
(be-located—at-Ql)
ARGO ARG1
quant

A computer is on every desk.

5 of 20

Three types of graphs

English Resource Semantics

BV ARGO ARG1 BV

A computer is on every desk.

5 of 20

Type-Driven Analysis

Quantification over individuals/sets

e What is [[every student smokes]? Va(student’(z) — smoke'(z))
® What is [some students smoke]? Jz(student’(x) A smoke'(z))

teacher

6 of 20

Quantification over individuals/sets

e What is [[every student smokes]? Va(student’(z) — smoke'(z))
® What is [some students smoke]? Jz(student’(x) A smoke'(z))

teacher

6 of 20

Quantification over individuals/sets

e What is [[every student smokes]? Va(student’(z) — smoke'(z))
® What is [some students smoke]? Jz(student’(x) A smoke'(z))

teacher

6 of 20

Quantification over individuals/sets

e What is [[every student smokes]? Va(student’(z) — smoke'(z))
® What is [some students smoke]? Jz(student’(x) A smoke'(z))

teacher

6 of 20

Quantification over individuals/sets

e What is [[every student smokes]? Va(student’(z) — smoke'(z))
® What is [some students smoke]? Jz(student’(x) A smoke'(z))

S

NIB/\

AQ.[Vz(student'(z) — Q(x))] VP

_— NP |
DET Ay.student'(y) \Y

AN |
every student smokes

teacher
[every] = AP.]AQ.[Vx(P(z) — Q(x))]]
[some] = AP.[]AQ.[3x(P(z) A Q(x))]]

6 of 20

Quantification over individuals/sets

e What is [[every student smokes]? Va(student’(z) — smoke'(z))
® What is [some students smoke]? Jz(student’(x) A smoke'(z))
X

S

NP/\

AQ.[Vz(student'(z) — Q(x))] VP

smoke

- - /\NP ‘
DET \y.student'(y) v
studen ‘ PN ‘
every student smokes

teacher
[every] = AP.]AQ.[Vx(P(z) — Q(x))]]
[some] = AP.[]AQ.[3x(P(z) A Q(x))]]

In order to do what they need to do (namely return a quantified NP of
type ((e, t),t)), such quantifiers must be of type ((e, t), ((e, t), t)), which

indicates that a quantifier identifies a relation between two sets.
6.0of 20

Analysis by function application (every student)

S
Vz(student’(z) — smoke'(z))
t
NP VP
AQ.[Vz(student'(z) — Q(z))] Az.smoke'(x)
((e;t), 1) (e,t)
DET\
((e,1), ((e, 1), 1)) Vv
every NP smokes
AP.AQ.[Vz(P(z) = Q(x))]] (e, t) Az.smoke'(x)
|
N
student

Ay.student'(y)

Only Function Application used

7 of 20

Analysis by function application (no student)

S
B (student’ () A smoke'(z))
t
NP VP
AQ.[Hz(student’ (z) A Q(x))] Az.smoke' ()
((e;t),t) (e,t)
D?\
€, t > ({8, t) t V
e <n<o h) NP smokes
AP.\Q.[Pz(P(z) A Q(x))]] (e, t) Az.smoke'(x)
|
N
student

Ay.student'(y)

Only Function Application used

8 of 20

Nothing

AQ-[B(Q(x)]

S
P (vanish'(z))

nothing

vanished
Az.vanish’(x)

FUNCTOR

S

vanish’(kim’)

N \%
Kim vanished
kim' Az.vanish'(z)

9 of 20

Type raising

S
smoke’(kim")

t

B -

((e,t),t) VP
AQ.Q(kim’) (e,t)
|
N v

Kim smokes
kim’ Azx.smoke’ ()

® Type raising is a unary rule.

® Type raising is systematic.

Type shifting is more like a free change.

Karl Marx: human nature is formed by the totality of social relations.

10 of 20

Semantic interpretation

({e;t), 1)

® Fvery student smokes.
the bucket associated with student is the only
element in the bucket associated with every student.

® Assume we have two students in our world model:

1t — 1 T
. — 1

| J 1:
SR

[every student] = | ¢ L 0
: — 0

LJ o= 1]
t'|—>0 o0
L LJ — 0] i

11 of 20

Problem with quantified NPs in object position

S
-
NP VP %
///\
V
Az.[Ay.love'(y, z)] NP
N (e, (e, t) AQ.[Va(cat'(z) — Q(x))]
Kim loves ((e,t),t)
_
every cat

¥ Type mismatch
'@ VP: Va(cat'(z) — \y.love'(y,x))

12 of 20

Problem with quantified NPs in object position

Va(cat'(x) — love'(kim'.z))
“slot” for the expected subject

“semantic material” corresponding to every cat

“semantic material” corresponding to loves

[every cat] is separated into two parts
® an unbound variable z

e universal quantifier Vz(cat'(z) — ...)

13 of 20

We now need some heavy machinery

® Movement
® Traces

® Predicate abstraction rule for binding of traces

Different shaped trees

14 of 20

Movement and traces

What if in reality the tree looks like this:

PN
AA

every cat 1

NP VP
|
NV O\

Kim loves ¢

15 of 20

Movement and traces

What if in reality the tree looks like this:

PN
AA

every cat 1

NP VP
|
NV O\

Kim loves ¢

® When a constituent is moved, a trace (here: t1) is left in its place. It's
bound to its index (here: 1).

15 of 20

Movement and traces

What if in reality the tree looks like this:

PN
AA

every cat 1

NP VP —— Ay.[love'(y,z)]
|
NV

Kim loves ¢

® When a constituent is moved, a trace (here: t1) is left in its place. It's
bound to its index (here: 1).

15 of 20

Movement and traces

What if in reality the tree looks like this:

S
NP/\.
every cat 1 S —— love'(kim',x)

N

NP VP —— Ay.[love'(y,z)]
|
NV

Kim loves ¢

® When a constituent is moved, a trace (here: t1) is left in its place. It's
bound to its index (here: 1).

15 of 20

Movement and traces

What if in reality the tree looks like this:
S

PN |

. — Az.[love’(kim'.x)]

NN

every cat 1 S —— love'(kim',x)

N

NP VP —— Ay.[love'(y,z)]
|
NV

Kim loves ¢

® When a constituent is moved, a trace (here: t1) is left in its place. It's
bound to its index (here: 1).

® What is the functionality of 17
Binding = — adding Ax. This is function abstraction in A-calculus.

15 of 20

Movement and traces

What if in reality the tree looks like this:
S —— Vz(cat'(x) — love'(kim'.x))

NP - —— Az.[love’(kim',x)]

NN

every cat |1 S —— love'(kim',x)

N

NP VP —— \y.[love’(y,x)]
|
NV N

Kim loves ¢

® When a constituent is moved, a trace (here: t1) is left in its place. It's
bound to its index (here: 1).

® What is the functionality of 17
Binding = — adding Ax. This is function abstraction in A-calculus.

15 of 20

Now our types work out

S
t
NP
e t)t
(e, t),t) a new rule based on
A function abstraction
Ax + M
every cat | e
NP VP
e (e, t)
V t

Kim (e, (e,t)) e

loves

Heim and Kratzer, p. 112 and chapter 5.4 on Variable binding

16 of 20

In-situ analysis vs. Movement analysis

® What we have just seen here is the movement analysis favoured by
many Chomskyan Generative Linguists

® There is also an “in-situ” analysis
® |n-situ means that the quantified NPs stay in their place

® The solution then involves two different types for quantified subject and
object NPs

® Combinatory Categorial Grammar uses an in-situ analysis
® Minimal Recursion Semantics solves the problem with underspecification
e Contentious issue in Computational Linguistics

® Advantages and disadvantages for either

17 of 20

Generalised Quantifiers

Generalised quantifiers

® At least three students smoke.

every bucket in the bucket associated with at /east three students
contains at least three students.

® nothing, most, many, half. ..

e FOPL is not expressive enough.

A convenient notation
® Vz(student'(x) — smoke'(z)) ® Jdz(student’(x) A smoke'(z))

® every'(x,student’(x),smoke’(x)) ® some’(x,student’(x),smoke’'(x))

(at,least,three'(x, student’(z), smoke'(a:)))

18 of 20

Truth conditions for generalized determiners

Determiner Truth conditions
[every] (P)(Q) Pc@
[some] (P)(Q) PnQ#0
[no] (P)(Q) PNnQ=10
[three] (P)(Q) 1PNQI =3

[less than three] (P)(Q) ||IPNQ| <3
[at least three] (P)(Q) ||[PNQ| >3
[most] (P)(Q) PRI =P —Ql
[few] (P)(Q) IPOQI <P Q]

19 of 20

Reading

® Heim and Kratzer (1999):

® Chapter 6 and 7 for quantifiers and scope
® Chapter 5 for traces and Predicate Abstraction

20 of 20

	What Is Scope?
	Type-Driven Analysis
	Generalised Quantifiers
	Appendix

