
Lecture 9: Scope
L98: Introduction to Computational Semantics

Weiwei Sun

Department of Computer Science and Technology
University of Cambridge

Michaelmas 2024/25



Every cat loves a cat.

Lecture 9: Scope

1. What is scope?

2. Type-driven analysis

3. Generalised quantifiers



What Is Scope?



Scope

∀x(cat’(x)→ ∃y(cat’(y) ∧ love’(x, y)))

∃y(cat’(y) ∧ ∀x(cat’(x)→ love’(x, y)))

Scope is an effect in syntax and semantics

• where a scopal lexical item casts its semantic effect over a particular
part of the clause or phrase

• the entire part of the clause is then said to be in the scope of the scopal
element

1 of 20



Types of scope
• negative scope

• modal scope

• “only” scope

• comparative scope

• contrastive scope (rather than)

• hypothetical scope

• attributive scope (she said that. . . )

• quotation scope (so-called. . . )

• . . .

“Only” scope

(1) a. Kim loved her cats.

b. Only Kim loved her cats.

c. Kim only loved her cats.

d. Kim loved only her cats.

2 of 20



How to identify scope in graph?

1

2
3

45

6

7

8

6

pron

die

loc nonsp

day
card

only

after

generic entity

only

arg1
arg2

arg1

bv

arg1

arg1

arg2

arg1

S

S/PP

he died

PP

PRP

four days after that

ADV

only

Semantic graphs are not hierarchical, therefore we can’t use a single node
to identify scope.

3 of 20



Syntax–semantics mismatch

(2) Kim loves every cat B∀x(cat’(x)→ love’(kim’, x))

S(loves)

VP(loves)

NP(cat)

NP

N
cat

DET
every

V
loves

NP(Kim)

N
Kim

〈∀,→〉

love’

xkim’

cat’

x

x

An alternative analysis of noun phrases: DET is the syntactic head.

4 of 20



Syntax–semantics mismatch

(2) Kim loves every cat B∀x(cat’(x)→ love’(kim’, x))

S(loves)

VP(loves)

NP(cat)

NP

N
cat

DET
every

V
loves

NP(Kim)

N
Kim

〈∀,→〉

love’

xkim’

cat’

x

x

An alternative analysis of noun phrases: DET is the syntactic head.

4 of 20



Syntax–semantics mismatch

(2) Kim loves every cat B∀x(cat’(x)→ love’(kim’, x))

S(loves)

VP(loves)

NP(cat)

NP

N
cat

DET
every

V
loves

NP(Kim)

N
Kim

〈∀,→〉

love’

xkim’

cat’

x

x

An alternative analysis of noun phrases: DET is the syntactic head.

4 of 20



Syntax–semantics mismatch

(2) Kim loves every cat B∀x(cat’(x)→ love’(kim’, x))

S(loves)

VP(loves)

NP(cat)

NP

N
cat

DET
every

V
loves

NP(Kim)

N
Kim

〈∀,→〉

love’

xkim’

cat’

x

x

An alternative analysis of noun phrases: DET is the syntactic head.

4 of 20



Three types of graphs

Abstract Meaning Representation

be-located-at-91

computer desk

every

ARG0 ARG1

quant

A computer is on every desk.

5 of 20



Three types of graphs

Abstract Meaning Representation

scope

be-located-at-91

computer desk

every

pred
ARG0ARG1

ARG0 ARG1

quant

A computer is on every desk.

5 of 20



Three types of graphs

English Resource Semantics

on p

computer n desk n

every qa q

ARG0 ARG1 BVBV

A computer is on every desk.

5 of 20



Type-Driven Analysis



Quantification over individuals/sets
• What is Jevery student smokesK? ∀x(student’(x)→ smoke’(x))
• What is Jsome students smokeK? ∃x(student’(x) ∧ smoke’(x))

smoke

student

teacher

x

S

VP

V

smokes

NP
λQ.[∀x(student’(x)→ Q(x))]

NP
λy.student’(y)

student

DET

every

JeveryK = λP.[λQ.[∀x(P (x)→ Q(x))]]

JsomeK = λP.[λQ.[∃x(P (x) ∧Q(x))]]

In order to do what they need to do (namely return a quantified NP of
type 〈〈e, t〉, t〉), such quantifiers must be of type 〈〈e, t〉, 〈〈e, t〉, t〉〉, which
indicates that a quantifier identifies a relation between two sets.

6 of 20



Quantification over individuals/sets
• What is Jevery student smokesK? ∀x(student’(x)→ smoke’(x))
• What is Jsome students smokeK? ∃x(student’(x) ∧ smoke’(x))

smoke

student

teacher

x

S

VP

V

smokes

NP
λQ.[∀x(student’(x)→ Q(x))]

NP
λy.student’(y)

student

DET

every

JeveryK = λP.[λQ.[∀x(P (x)→ Q(x))]]

JsomeK = λP.[λQ.[∃x(P (x) ∧Q(x))]]

In order to do what they need to do (namely return a quantified NP of
type 〈〈e, t〉, t〉), such quantifiers must be of type 〈〈e, t〉, 〈〈e, t〉, t〉〉, which
indicates that a quantifier identifies a relation between two sets.

6 of 20



Quantification over individuals/sets
• What is Jevery student smokesK? ∀x(student’(x)→ smoke’(x))
• What is Jsome students smokeK? ∃x(student’(x) ∧ smoke’(x))

smoke

student

teacher

x

S

VP

V

smokes

NP
λQ.[∀x(student’(x)→ Q(x))]

NP
λy.student’(y)

student

DET

every

JeveryK = λP.[λQ.[∀x(P (x)→ Q(x))]]

JsomeK = λP.[λQ.[∃x(P (x) ∧Q(x))]]

In order to do what they need to do (namely return a quantified NP of
type 〈〈e, t〉, t〉), such quantifiers must be of type 〈〈e, t〉, 〈〈e, t〉, t〉〉, which
indicates that a quantifier identifies a relation between two sets.

6 of 20



Quantification over individuals/sets
• What is Jevery student smokesK? ∀x(student’(x)→ smoke’(x))
• What is Jsome students smokeK? ∃x(student’(x) ∧ smoke’(x))

smoke

student

teacher

x

S

VP

V

smokes

NP
λQ.[∀x(student’(x)→ Q(x))]

NP
λy.student’(y)

student

DET

every

JeveryK = λP.[λQ.[∀x(P (x)→ Q(x))]]

JsomeK = λP.[λQ.[∃x(P (x) ∧Q(x))]]

In order to do what they need to do (namely return a quantified NP of
type 〈〈e, t〉, t〉), such quantifiers must be of type 〈〈e, t〉, 〈〈e, t〉, t〉〉, which
indicates that a quantifier identifies a relation between two sets.

6 of 20



Quantification over individuals/sets
• What is Jevery student smokesK? ∀x(student’(x)→ smoke’(x))
• What is Jsome students smokeK? ∃x(student’(x) ∧ smoke’(x))

smoke

student

teacher

x
S

VP

V

smokes

NP
λQ.[∀x(student’(x)→ Q(x))]

NP
λy.student’(y)

student

DET

every

JeveryK = λP.[λQ.[∀x(P (x)→ Q(x))]]

JsomeK = λP.[λQ.[∃x(P (x) ∧Q(x))]]

In order to do what they need to do (namely return a quantified NP of
type 〈〈e, t〉, t〉), such quantifiers must be of type 〈〈e, t〉, 〈〈e, t〉, t〉〉, which
indicates that a quantifier identifies a relation between two sets.

6 of 20



Quantification over individuals/sets
• What is Jevery student smokesK? ∀x(student’(x)→ smoke’(x))
• What is Jsome students smokeK? ∃x(student’(x) ∧ smoke’(x))

smoke

student

teacher

x
S

VP

V

smokes

NP
λQ.[∀x(student’(x)→ Q(x))]

NP
λy.student’(y)

student

DET

every

JeveryK = λP.[λQ.[∀x(P (x)→ Q(x))]]

JsomeK = λP.[λQ.[∃x(P (x) ∧Q(x))]]

In order to do what they need to do (namely return a quantified NP of
type 〈〈e, t〉, t〉), such quantifiers must be of type 〈〈e, t〉, 〈〈e, t〉, t〉〉, which
indicates that a quantifier identifies a relation between two sets.

6 of 20



Analysis by function application (every student)
S

∀x(student’(x) → smoke’(x))

t

VP
λx.smoke’(x)

〈e, t〉

V
smokes

λx.smoke’(x)

NP
λQ.[∀x(student’(x) → Q(x))]

〈〈e, t〉, t〉

NP
〈e, t〉

N
student

λy.student’(y)

DET
〈〈e, t〉, 〈〈e, t〉, t〉〉

every
λP.[λQ.[∀x(P (x) → Q(x))]]

Only Function Application used

7 of 20



Analysis by function application (no student)
S

@x(student’(x) ∧ smoke’(x))

t

VP
λx.smoke’(x)

〈e, t〉

V
smokes

λx.smoke’(x)

NP
λQ.[@x(student’(x) ∧Q(x))]

〈〈e, t〉, t〉

NP
〈e, t〉

N
student

λy.student’(y)

DET
〈〈e, t〉, 〈〈e, t〉, t〉〉

no
λP.[λQ.[@x(P (x) ∧Q(x))]]

Only Function Application used

8 of 20



Nothing

S
@x(vanish’(x))

t

VP
〈e, t〉

V
vanished

λx.vanish’(x)

NP
〈〈e, t〉, t〉

N
nothing

λQ.[@x(Q(x)]

S
vanish’(kim’)

t

VP
〈e, t〉

V
vanished

λx.vanish’(x)

NP
e

N
Kim
kim’

FUNCTOR

9 of 20



Type raising

S
smoke’(kim’)

t

VP
〈e, t〉

V
smokes

λx.smoke’(x)

NP
〈〈e, t〉, t〉
λQ.Q(kim’)

N
Kim
kim’

• Type raising is a unary rule.

• Type raising is systematic.

• Type shifting is more like a free change.

• Karl Marx: human nature is formed by the totality of social relations.

10 of 20



Semantic interpretation

〈〈e, t〉, t〉

• Every student smokes.
the bucket associated with student is the only
element in the bucket associated with every student.

• Assume we have two students in our world model:

Jevery studentK =



[
t 7→ 1
j 7→ 1

]
7→ 1[

t 7→ 1
j 7→ 0

]
7→ 0[

t 7→ 0
j 7→ 1

]
7→ 0[

t 7→ 0
j 7→ 0

]
7→ 0


11 of 20



Problem with quantified NPs in object position

S

VP U

NP
λQ.[∀x(cat’(x) → Q(x))]

〈〈e, t〉, t〉

every cat

V
λx.[λy.love’(y, x)]

〈e, 〈e, t〉〉
loves

NP

N
Kim

U Type mismatch

i VP: ∀x(cat’(x)→ λy.love’(y, x))

12 of 20



Problem with quantified NPs in object position

∀x(cat’(x)→ love’(kim’,x))

“slot” for the expected subject

“semantic material” corresponding to every cat

“semantic material” corresponding to loves

Jevery catK is separated into two parts

• an unbound variable x

• universal quantifier ∀x(cat’(x)→ . . .)

13 of 20



We now need some heavy machinery

• Movement

• Traces

• Predicate abstraction rule for binding of traces

• Different shaped trees

14 of 20



Movement and traces

What if in reality the tree looks like this:

S

.

S

VP

t1
V

loves

NP

N
Kim

1

NP

every cat

∀x(cat’(x)→ love’(kim’,x))

λx.[love’(kim’,x)]

love’(kim’,x)

λy.[love’(y,x)]

• When a constituent is moved, a trace (here: t1) is left in its place. It’s
bound to its index (here: 1).

• What is the functionality of 1 ?
Binding x – adding λx. This is function abstraction in λ-calculus.

15 of 20



Movement and traces

What if in reality the tree looks like this:

S

.

S

VP

t1
V

loves

NP

N
Kim

1

NP

every cat

∀x(cat’(x)→ love’(kim’,x))

λx.[love’(kim’,x)]

love’(kim’,x)

λy.[love’(y,x)]

• When a constituent is moved, a trace (here: t1) is left in its place. It’s
bound to its index (here: 1).

• What is the functionality of 1 ?
Binding x – adding λx. This is function abstraction in λ-calculus.

15 of 20



Movement and traces

What if in reality the tree looks like this:

S

.

S

VP

t1
V

loves

NP

N
Kim

1

NP

every cat

∀x(cat’(x)→ love’(kim’,x))

λx.[love’(kim’,x)]

love’(kim’,x)

λy.[love’(y,x)]

• When a constituent is moved, a trace (here: t1) is left in its place. It’s
bound to its index (here: 1).

• What is the functionality of 1 ?
Binding x – adding λx. This is function abstraction in λ-calculus.

15 of 20



Movement and traces

What if in reality the tree looks like this:

S

.

S

VP

t1
V

loves

NP

N
Kim

1

NP

every cat

∀x(cat’(x)→ love’(kim’,x))

λx.[love’(kim’,x)]

love’(kim’,x)

λy.[love’(y,x)]

• When a constituent is moved, a trace (here: t1) is left in its place. It’s
bound to its index (here: 1).

• What is the functionality of 1 ?
Binding x – adding λx. This is function abstraction in λ-calculus.

15 of 20



Movement and traces

What if in reality the tree looks like this:

S

.

S

VP

t1
V

loves

NP

N
Kim

1

NP

every cat

∀x(cat’(x)→ love’(kim’,x))

λx.[love’(kim’,x)]

love’(kim’,x)

λy.[love’(y,x)]

• When a constituent is moved, a trace (here: t1) is left in its place. It’s
bound to its index (here: 1).

• What is the functionality of 1 ?
Binding x – adding λx. This is function abstraction in λ-calculus.

15 of 20



Movement and traces

What if in reality the tree looks like this:

S

.

S

VP

t1
V

loves

NP

N
Kim

1

NP

every cat

∀x(cat’(x)→ love’(kim’,x))

λx.[love’(kim’,x)]

love’(kim’,x)

λy.[love’(y,x)]

• When a constituent is moved, a trace (here: t1) is left in its place. It’s
bound to its index (here: 1).

• What is the functionality of 1 ?
Binding x – adding λx. This is function abstraction in λ-calculus.

15 of 20



Now our types work out

S
t

〈e, t〉

S
t

VP
〈e, t〉

t1
e

V
〈e, 〈e, t〉〉

loves

NP
e

Kim

1
e

NP
〈〈e, t〉, t〉

every cat

a new rule based on
function abstraction

λx+M

Heim and Kratzer, p. 112 and chapter 5.4 on Variable binding
16 of 20



In-situ analysis vs. Movement analysis

• What we have just seen here is the movement analysis favoured by
many Chomskyan Generative Linguists

• There is also an “in-situ” analysis

• In-situ means that the quantified NPs stay in their place

• The solution then involves two different types for quantified subject and
object NPs

• Combinatory Categorial Grammar uses an in-situ analysis

• Minimal Recursion Semantics solves the problem with underspecification

• Contentious issue in Computational Linguistics

• Advantages and disadvantages for either

17 of 20



Generalised Quantifiers



Generalised quantifiers

• At least three students smoke.
every bucket in the bucket associated with at least three students
contains at least three students.

• nothing , most, many , half . . .

• FOPL is not expressive enough.

A convenient notation
• ∀x(student’(x)→ smoke’(x))

• every’(x, student’(x), smoke’(x))

• ∃x(student’(x) ∧ smoke’(x))

• some’(x, student’(x), smoke’(x))

at least three’(x, student’(x), smoke’(x))

18 of 20



Truth conditions for generalized determiners

Determiner Truth conditions

JeveryK(P )(Q) P ⊆ Q
JsomeK(P )(Q) P ∩Q 6= ∅
JnoK(P )(Q) P ∩Q = ∅
JthreeK(P )(Q) ‖P ∩Q‖ = 3
Jless than threeK(P )(Q) ‖P ∩Q‖ < 3
Jat least threeK(P )(Q) ‖P ∩Q‖ ≥ 3
JmostK(P )(Q) ‖P ∩Q‖ ≥ ‖P −Q‖
JfewK(P )(Q) ‖P ∩Q‖ � ‖P −Q‖

19 of 20



Reading

• Heim and Kratzer (1999):
• Chapter 6 and 7 for quantifiers and scope
• Chapter 5 for traces and Predicate Abstraction

20 of 20


	What Is Scope?
	Type-Driven Analysis
	Generalised Quantifiers
	Appendix

