
Lecture 8: Bidirectional Syntactico-Semantic
Composition

Weiwei Sun

Department of Computer Science and Technology
University of Cambridge

Michaelmas 2024/25

Lexicalised Grammar

boysome

want
go

arg1arg1

bv

arg2S

want
go

arg1arg1

arg2VP

go
arg1VP

go
arg1V

go

∅

to

want
arg1

arg2 V

want

boysome
bvNP

boy
N

boys

some
bvD

Some

⇐=
VPNP

S

=⇒
ND

NP

⇐=
X Y

V

Z

VP
VP

⇐= V

VP

S\NP

NP/N �
(S\NP[x])/(S\NP[x])

λP.λx.[want’(x) ∧ P (x)]

1 of 24

Lexicalised Grammar

boysome

want
go

arg1arg1

bv

arg2S

want
go

arg1arg1

arg2VP

go
arg1VP

go
arg1V

go

∅

to

want
arg1

arg2 V

want

boysome
bvNP

boy
N

boys

some
bvD

Some

⇐=
VPNP

S

=⇒
ND

NP

⇐=
X Y

V

Z

VP
VP

⇐= V

VP

S\NP

NP/N �
(S\NP[x])/(S\NP[x])

λP.λx.[want’(x) ∧ P (x)]

1 of 24

Lexicalised Grammar

boysome

want
go

arg1arg1

bv

arg2S

want
go

arg1arg1

arg2VP

go
arg1VP

go
arg1V

go

∅

to

want
arg1

arg2 V

want

boysome
bvNP

boy
N

boys

some
bvD

Some

⇐=
VPNP

S

=⇒
ND

NP

⇐=
X Y

V

Z

VP
VP

⇐= V

VP

S\NP

NP/N

�
(S\NP[x])/(S\NP[x])

λP.λx.[want’(x) ∧ P (x)]

1 of 24

Lexicalised Grammar

boysome

want
go

arg1arg1

bv

arg2S

want
go

arg1arg1

arg2VP

go
arg1VP

go
arg1V

go

∅

to

want
arg1

arg2 V

want

boysome
bvNP

boy
N

boys

some
bvD

Some

⇐=
VPNP

S

=⇒
ND

NP

⇐=
X Y

V

Z

VP
VP

⇐= V

VP

S\NP

NP/N �
(S\NP[x])/(S\NP[x])

λP.λx.[want’(x) ∧ P (x)]

1 of 24

Scoring a Derivation Tree

boysome

want
go

arg1arg1

bv

arg2S

want
go

arg1arg1

arg2VP

go
arg1VP

go
arg1V

go

∅

to

want
arg1

arg2 V

want

boysome
bvNP

boy
N

boys

some
bvD

Some

⇐=

X Y

V

Z

=⇒VP

X

Z
1

2

3

VP

enumerating trees

String-to-graph parsing:

argmax
T∈T (x)

score(T)

Graph-to-string Parsing:

argmax
T∈T (G)

score(T)

2 of 24

Scoring a Derivation Tree

boysome

want
go

arg1arg1

bv

arg2S

want
go

arg1arg1

arg2VP

go
arg1VP

go
arg1V

go

∅

to

want
arg1

arg2 V

want

boysome
bvNP

boy
N

boys

some
bvD

Some

⇐=

X Y

V

Z

=⇒VP

X

Z
1

2

3

VP

enumerating trees

String-to-graph parsing:

argmax
T∈T (x)

score(T)

Graph-to-string Parsing:

argmax
T∈T (G)

score(T)

2 of 24

A Unified Parsing Problem

Semantic Graph Parsing
arg max

T∈T (x)
score(T)

Parsing Semantic Graphs
arg max

T∈T (G)
score(T)

The boy

next

really

next

seems

next

to

next

care

next

Computing all possible / the best derivation(s) of a given graph

max
T∈T (G)

score(T) = max
T∈T (G)

∑
γ in T

score(γ,G)

⊕
T∈T (G)

 ⊗
γ in T

score(γ,G)

 Inside Viterbi

⊕ a+ b max(a, b)
⊗ a× b a× b

Semiring parsing

3 of 24

A Unified Parsing Problem

Semantic Graph Parsing
arg max

T∈T (x)
score(T)

Parsing Semantic Graphs
arg max

T∈T (G)
score(T)

The boy

next

really

next

seems

next

to

next

care

next

Computing all possible / the best derivation(s) of a given graph

max
T∈T (G)

score(T) = max
T∈T (G)

∑
γ in T

score(γ,G)

⊕
T∈T (G)

 ⊗
γ in T

score(γ,G)

 Inside Viterbi

⊕ a+ b max(a, b)
⊗ a× b a× b

Semiring parsing

3 of 24

A Unified Parsing Problem; A Unified Parsing Algorithm

A dynamic programming algorithm

A

CB D

E F G

arg1

arg1

arg1

arg1

cjt-l

cjt-r cjt-l

cjt-r

2 3

1

Y1

2

3

4

X=⇒Z

arg1
arg1

arg1

4 of 24

A Unified Parsing Problem; A Unified Parsing Algorithm

A dynamic programming algorithm

A

CB D

E F G

arg1

arg1

arg1

arg1

cjt-l

cjt-r cjt-l

cjt-r

2 3

1

Y1

2

3

4

X=⇒Z

arg1
arg1

arg1

4 of 24

A Unified Parsing Problem; A Unified Parsing Algorithm

A dynamic programming algorithm

A

CB D

E F G

arg1

arg1

arg1

arg1

cjt-l

cjt-r cjt-l

cjt-r

2 3

1

Y1

2

3

4

X=⇒Z

arg1
arg1

arg1

4 of 24

A Unified Parsing Problem; A Unified Parsing Algorithm

A dynamic programming algorithm

A

CB D

E F G

arg1

arg1

arg1

arg1

cjt-l

cjt-r cjt-l

cjt-r

2 3

1

Y1

2

3

4

X=⇒Z

arg1
arg1

arg1

4 of 24

A Unified Parsing Problem; A Unified Parsing Algorithm

A dynamic programming algorithm

A

CB D

E F G

arg1

arg1

arg1

arg1

cjt-l

cjt-r cjt-l

cjt-r

2 3

1

Y1

2

3

4

X=⇒Z

arg1
arg1

arg1

4 of 24

A Unified Parsing Problem; A Unified Parsing Algorithm

A dynamic programming algorithm

A

CB D

E F G

arg1

arg1

arg1

arg1

cjt-l

cjt-r cjt-l

cjt-r

2 3

1

Y1

2

3

4

X=⇒Z

arg1
arg1

arg1

4 of 24

A Unified Parsing Problem; A Unified Parsing Algorithm

A dynamic programming algorithm

A

CB D

E F G

arg1

arg1

arg1

arg1

cjt-l

cjt-r cjt-l

cjt-r

2 3

1

Y1

2

3

4

X=⇒Z

arg1
arg1

arg1

4 of 24

A Unified Parsing Problem; A Unified Parsing Algorithm

A dynamic programming algorithm

A

CB D

E F G

arg1

arg1

arg1

arg1

cjt-l

cjt-r cjt-l

cjt-r

2 3

1

Y1

2

3

4

X=⇒Z

arg1
arg1

arg1

4 of 24

A Unified Parsing Problem; A Unified Parsing Algorithm

A dynamic programming algorithm

Binarizing rules via tree decomposition

A

CB D

E F G

arg1

arg1

arg1

arg1

cjt-l

cjt-r cjt-l

cjt-r

2 3

1

Y1

2

3

4

X=⇒Z

arg1
arg1

arg1

4

X

4

2 3

2

3

4

arg1

34

arg1

2 3

14

Y1
2

3

14

arg1

η

η1
η2

η3

ηr

4 of 24

Ambiguity: Building the Derivation Forest

Semantic Graph Parsing
arg max

T∈T (x)
score(T)

Parsing Semantic Graphs
arg max

T∈T (G)
score(T)

ABCD

proncareseemreally

arg1 arg1 arg1

1

2 3 4 5:t

6 7 8 9 10 1112 Lt Rt

ABCD

careseemreally

arg1 arg1 arg1
GRtGLt

Gt

2

1

ADV VRP

5 of 24

Ambiguity: Building the Derivation Forest

Semantic Graph Parsing
arg max

T∈T (x)
score(T)

Parsing Semantic Graphs
arg max

T∈T (G)
score(T)

ABCD

proncareseemreally

arg1 arg1 arg1

1

2 3 4 5:t

6 7 8 9 10 1112 Lt Rt

ABCD

careseemreally

arg1 arg1 arg1
GRtGLt

Gt

2

1

ADV VRP

5 of 24

Ambiguity: Building the Derivation Forest

Semantic Graph Parsing
arg max

T∈T (x)
score(T)

Parsing Semantic Graphs
arg max

T∈T (G)
score(T)

ABCD

proncareseemreally

arg1 arg1 arg1

1

2 3 4 5:t

6 7 8 9 10 1112 Lt Rt

ABCD

careseemreally

arg1 arg1 arg1
GRtGLt

Gt

2

1

ADV VRP

5 of 24

Real-World Grammar; Real Running Time

A wide-coverage linguistically-meaningful grammar is indiced by applying
an automatic grammar extraction algorithm. The grammar is lexicalized
(LxG), in that argument-structures are lexically encoded.

LxG #Rule Treewidth #Node #Terminal

Lexical 46,101
avg. 1.07 2.15 2.47
max. 4 10 18

Phrasal 8,594
avg. 1.62 2.94 0.79
max. 6 7 10

The time for parsing graphs is highly depended on the implementation and
hardware. We report two exact numbers:

• the number of successful (#Succ) integrations for chart items.

• the number of total (=successful+failed, #Total) integrations.

6 of 24

Evaluation with a Realistic Grammar

We test the efficiency of the algorithm on 4500 EDS graphs randomly
selected from DeepBank 1.1 with the size in the range of 5 to 50.

#Node Time(s) #Succ/#Total OOM #Graph

All 21.64 0.21% 305 4500

<10 0.02 12.55% 0 500
10∼20 0.45 1.42% 0 1000
20∼30 9.36 0.34% 4 1000
30∼50 47.68 0.19% 301 2000

7 of 24

Evaluation with a Realistic Grammar

We test the efficiency of the algorithm on 4500 EDS graphs randomly
selected from DeepBank 1.1 with the size in the range of 5 to 50.

10 20 30 40 50

104

105

106

107

108

109

1010

#Node

#
In

te
g

a
ti

o
n

s
#Succ
#Total

7 of 24

Locality and the Constructivist Hypothesis

Locality as Terminal Edge-Adjacency

The Principle of Adjacency
Combinatory rules may only apply to finitely many phonologically

realized and string-adjacent entities.
— M. Steedman

A graph-based view of string-adjacency

The boy

next

really

next

seems

next

to

next

care

next

1 2 3 4
NP VPnext

co-recognizable

8 of 24

Locality as Terminal Edge-Adjacency

The Principle of Adjacency
Combinatory rules may only apply to finitely many phonologically

realized and string-adjacent entities.
— M. Steedman

A graph-based view of string-adjacency

The boy

next

really

next

seems

next

to

next

care

next

1 2 3 4
NP VPnext

co-recognizable

8 of 24

Locality as Terminal Edge-Adjacency

The Principle of Adjacency
Combinatory rules may only apply to finitely many phonologically

realized and string-adjacent entities.
— M. Steedman

A graph-based view of string-adjacency

The boy

next

really

next

seems

next

to

next

care

next

1 2 3 4
NP VPnext

co-recognizable

8 of 24

A Locality-centric Complexity Analysis (1)

In a to-be-recognized subgraph which consists of only terminal edges, if
one node is identified in an input graph, the possible positions of the other
nodes are highly restricted.

Example

4

5

6

8

7

1

2

X
1

2
3

9

3

Y
1

2

3
4

RDη1
RDη2

RDη

Shadowed areas mean subgraphs which consists of only terminal edges. If
4 is identified, then the cost to recognize 6 95 is highly restricted.

9 of 24

A Locality-centric Complexity Analysis (2)

4

5

6

8

7

1

2

X
1

2
3

9

3

Y
1

2

3
4

RDη1
RDη2

RDη

Looking for a maximal subset of nodes such that all nodes in this subset is
not terminal edge–adjacent to each other.

{ 32 1 6 }

Notation: δ

10 of 24

A Locality-centric Complexity Analysis (3)

The time complexity of the algorithm

• treewidth-centric: O((3dn)k+1)

• locality-centric: O(nδ∗dmg3dng)
Here k/δ∗/ng/mg is related to the grammar and d is the maximum degree
of any node in the input graph.

It is provable that δ∗ ≤ k + 1. Empirical results:

#Rule k + 1 δ

LxG Phrasal 8,594
avg. 2.62 2.51
max. 7 7

11 of 24

Computational Linguistics and Linguistics

Work in computational linguistics is in some cases motivated from
a scientific perspective in that one is trying to provide a computational
explanation for a particular linguistic or psycholinguistic phenomenon;
and in other cases the motivation may be more purely technological
in that one wants to provide a working component of a speech or
natural language system.

www.aclweb.org

12 of 24

www.aclweb.org

Distributed Argument-Structure (1)
Lexicalized Grammar

ABCD

careseemreally

arg1 arg1 arg1VP

ABC

careseem

arg1 arg1VRP

B A
arg1

care

VPC B
arg1

seem

VD C

really
arg1

ADV

2

1

ADV VRP

γ4

1 2

3

V VP

γ5

Construction Grammar

BCD

careseemreally

arg1 arg1
VP

BC

careseem

arg1
VRP

B

care

VPC

seem

VD

really

ADV

12

VRPADV

arg1
γ12

1 2

V VP

arg1
γ13

Lexicalism vs. Constructivism
• Lexicalist approaches were dominant in theoretical linguistics.

• Lexicalist approaches are dominant in computational linguistics: HPSG,
LFG, CCG, . . .

• HRG-based graph parsing , the constructivist hypothesis.

• Roughly speaking, we lexicalise concepts and constructionalise relations
of concepts.

13 of 24

Distributed Argument-Structure (2)
• Lexicalist approach

Lexical rules try to use up all terminal edges at the initial stage of
semantic composition.

• Constructivist approach
By distributing terminal edges to all rules, both lexical and phrasal, δ is
reduced on average.

boysome

want
go

arg1arg1

bv

arg2S

wantgo arg2 VP

go
VP

want
V

boysome
bvNP

boy
N

some
D

⇐=

NP

arg1arg1

VP
S

=⇒bv
D N

NP
⇐= arg2

V VP

VP

Figure: *

Semantic composition with a Construction Grammar (CxG)

14 of 24

Distributed Argument-Structure (2)
• Lexicalist approach

Lexical rules try to use up all terminal edges at the initial stage of
semantic composition.

• Constructivist approach
By distributing terminal edges to all rules, both lexical and phrasal, δ is
reduced on average.

#Rule k + 1 δ

CxG
Lexical 34,348

avg. 1.36 —
max. 5 —

Phrasal 7,978
avg. 2.68 1.59
max. 8 7

LxG
Lexical 46,101

avg. 2.07 —
max. 5 —

Phrasal 8,594
avg. 2.62 2.51
max. 7 7

14 of 24

Terminal-First Strategy for Node Matching

2 3

1

Y1

2

3

4

X=⇒Z

arg1
arg1

arg1

4

X

4

2 3

2

3

4

arg1

34

arg1

2 3

14

Y1
2

3

14

arg1

4

X

2 3

14

Y1
2

3

14

23

arg1

14

2arg1

14

arg1

8
4

15 of 24

Fast Accessing of Chart Items

Edge-zero case (unifying nodes)

To integrate/glue two subgraphs, the nodes on the boundary must be
identical in terms of their mapping relations to the input graph.

2 3

1

Y1

2

3

4

X=⇒Z

arg1
arg1

arg1
A

C D

FE G

cjt-l

cjt-r cjt-l

cjt-r

arg1 ,


2 7→ A

3 7→ F

4 7→ E





AE

F

arg1
arg1

,


1 7→ A

3 7→ F

4 7→ E


 8

16 of 24

Fast Accessing of Chart Items

Edge-zero case (unifying nodes)

To integrate/glue two subgraphs, the nodes on the boundary must be
identical in terms of their mapping relations to the input graph.

2 3

1

Y1

2

3

4

X=⇒Z

arg1
arg1

arg1
A

C D

FE G

cjt-l

cjt-r cjt-l

cjt-r

arg1 ,


2 7→ A

3 7→ F

4 7→ E





AE

F

arg1
arg1

,


2 7→ A

3 7→ F

4 7→ E


 4

16 of 24

Fast Accessing of Chart Items

Edge-zero case (unifying nodes)

To integrate/glue two subgraphs, the nodes on the boundary must be
identical in terms of their mapping relations to the input graph.

2 3

1

Y1

2

3

4

X=⇒Z

arg1
arg1

arg1
A

C D

FE G

cjt-l

cjt-r cjt-l

cjt-r

arg1 ,


2 7→ A

3 7→ F

4 7→ E





AE

F

arg1
arg1

,


1 7→ A

3 7→ F

4 7→ E


 4

We put the mappings into the indexing keys of chart items.

16 of 24

Results on DeepBank (1)

10 20 30 40 50

104

105

106

107

108

109

1010

#Node

#
T

o
ta

l
In

te
g

a
ti

o
n

s

LxG original
LxG +both
CxG original
CxG +terminal-first
CxG +index
CxG +both

17 of 24

Results on DeepBank (2)

Time(s) #Succ/#Total

LxG

original 21.64 0.21%

+terminal-first 21.02 0.12%
+index 1.93 4.24%
+both 1.51 2.53%

CxG

original 0.41 5.67%

+terminal-first 0.12 2.23%
+index 0.32 32.34%
+both 0.07 29.34%

• terminal-first means the terminal-first match strategy;

• index means the fast item accessing method;

• both means to use both terminal-first and index.

18 of 24

Weakly Regular Graph Grammar (1)

1 2

=⇒Z

(T0)
2

X
3Y=⇒Z

(T1)

1

2

X

3

4

Y=⇒Z

(T2)

1

2

X
3Y=⇒Z

(T3)

Definition

A node v in an edge-labeled graph G is free, if E(v) contains only
nonterminal edge(s). The number of those nodes is denoted by f(G).

Definition

A weakly regular rule A→ R satisfy the following conditions: (1) R is
connected; (2) term(R) is an empty graph or a connected graph; (3) if a
free node of R is incident to only one edge, it is also an external node.

19 of 24

Weakly Regular Graph Grammar (2)

ABC

pronholdputty

arg1arg2S

C

putty

NP
ABC

hold

arg1arg2V

10
V

pron NP

S

1

2

X

3

4

Y=⇒Z

(T2)

20 of 24

Weakly Regular Graph Grammar (3)

X

ZY
want

go

arg1arg1

arg2VP

X

Y

go arg1
VP

to go

X

ZY
want

arg1

arg2 V

want

⇐=
X Y

V

Z

VP
VP 1 2

=⇒Z

(T0)

2

X
3Y=⇒Z

(T1)

boysome

want
go

arg1arg1

bv

arg2S

wantgo arg2 VP
boysome

bvNP

⇐=

NP

arg1arg1

VP
S 1

2

X
3Y=⇒Z

(T3)

21 of 24

Weakly Regular Graph Grammar (4)

1 2

=⇒Z

(T0)
2

X
3Y=⇒Z

(T1)

1

2

X

3

4

Y=⇒Z

(T2)

1

2

X
3Y=⇒Z

(T3)

Proposition

If A→ R is binary and weakly regular, then δ(R) = f(R) or f(R) + 1.

22 of 24

Readings

• Y. Chen and W. Sun. Parsing into Variable-in-situ Logico-Semantic
Graphs.

• Y. Ye and W. Sun. Exact yet Efficient Graph Parsing, Bi-directional
Locality and the Constructivist Hypothesis.

23 of 24

https://aclanthology.org/2020.acl-main.605/
https://aclanthology.org/2020.acl-main.605/
https://aclanthology.org/2020.acl-main.377/
https://aclanthology.org/2020.acl-main.377/

	Locality and the Constructivist Hypothesis
	Neural Graph Parsing 2

