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• Mama have you said, that you first your homework make must.

• When you this ready have, then you can to Julia go.

• Lara, can you me please out the bath a towel bring?

from Knallerfrauen

Lecture 6: Modeling Syntactico-Semantic Composition

1. Principle of compositionality

2. Composition-based approach to semantic parsing

3. Locality

4. Context-free graph rewriting



Principle of Compositionality



Modeling syntactico-semantic composition
The Principle of Compositionality

The meaning of an expression is a function of the meanings of
its parts and of the way they are syntactically combined.

B. Partee

bearblue
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Composition-Based Approach



Representational vs derivational

?
pandablue

Modeling syntactico-semantic composition/derivation

• Assume the complicated structure is generated step-by-step.
• And assume that it is relatively easy to make a decision for a single step.
• An internal structure, e.g. tree, is used to represent the process.
• We don’t directly evaluate the goodness of the target structure, which

is the result of a derivation.
• We directly evaluate the goodness of the derivation structure, and get
the derived structure (for free).

• Parsing and generation share a model, probably like human language
processing.
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Compositional Parsing

% semantic/meaning representation parsing: mapping a
sentence to an MR, such as semantic graph.

2 step 1: assign semantic interpretations to “words”. The
elementary MR for apples is graph with a single node. We
mainly do “word sense disambiguation” in this step.
2 step 2: combine graphs according to syntactico-semantic
rules. We merge the “eat” and “apples” graphs by aug-
menting VP→V NP. We add the blue edge to link the two
graphs. We should view the blue edge as a third graph.
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Compositional Parsing

2 step 1: assign semantic interpretations to “to”,
which is an empty graph.
2 step 2: glue the “eat apples” graph together with
an empty graph.
3 continue: iterate the above process.
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Compositional Surface Realisation

% surface realisation: mapping an MR, such as semantic graph, to
a string.

3 We recursively decompose the input graph until we meet ele-
mentary graphs that correspond to “words”.
In each step, we cut a big graph into two smaller ones. In fact, we
should view the blue edges as a third graph.
@ Our scissors are syntactico-semantic rules.
2 In the first step to handle current example, we get S→NP VP
on the syntactic side, which puts the subject NP before the predi-
cate VP.
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Locality



Idan Landau’s lecture note on syntax

Syntax is a thankless trade; the man on the street (and some
semanticists, for that matter) think it is trivial (at best) or superfluous
(at worst).
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I can understand because of the sister/aunt/. . . relations

must

make

homeworkyour

first

you

that

said,

you

have

Mama

• Arguments/adjuncts should c-command a target verb.

• A node in a syntactic tree c-commands its sister node and all of its
sister’s descendants
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Can you understand?

• Mama have you said, that you first your homework make must.

• When you this ready have, then you can to Julia go.

(1) Mama first have you said, that you your homework make must.

It is hard for me to understand (1), because it breaks the
sister/aunt/. . . pattern, which is found in a majority of natural languages.
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Is the distance between you and make long?
Mama have you said, that you first your homework, which you should do

but haven’t done yet, make must.

11 words in between; but still local wrt tree

must

make

you should do but. . .which

your homework,

first

you

that

the calculation of distance is based on the syntactic
configuration.
configurational vs non-configurational
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Can you understand?

• Mama have you said, that you first your homework make must.

(2) Your homework, Mama have you said, that you first make must.

Topic-prominent vs subject-prominent

 Li and Thompson distinguish topic-prominent languages, such as
Mandarin and Japanese, from subject-prominent languages, such as
English.

 A topic-prominent language uses morphology/syntax to emphasize the
topic-comment structure of the sentence.

I can understand (2) because this is a very frequent phenomenon in
Mandarin.
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Challenge 1: long distance

must

make

first

you

that

said,

you

have

Mama

your homework

Modeling syntactico-semantic composition/derivation

2 In each step, the rule should be “local”.

3 The long-distance dependency is derived by combining all “local” rules.

r We can achieve this by augmenting phrase-structure rules.
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Unbounded dependency constructions (UDC)

Topicalisation

(3) a. Kim, Sandy loves.

b. Your homework, Mama have you said, that you first make must.

Wh-movement

(4) a. Who do you think Bob saw?

b. Who do you think Bob said he saw?

c. Who do you think Bob said he imagined that he saw?

• Some sentences exhibit phrases that appear “out of place” based on
simple head–argument or head–modifier constraints.

• The distance from the position of the “dislocated” phrase to its
“natural home” can be quite far (in the limit, unbounded).
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More UDCs

Coindexation
• The “dislocated” phrase is called “trace”, denoted as i or ti.

• We use subscript, e.g. i, to indicate a discourse referent.

Relative clause

(5) a. This is the man [whoi Sandy loves i]. ▷Wh-relative clause

b. This is [the man]i [Sandy loves i]. ▷Reduced relative clause

Clefts

(6) a. It is Kimi [whoi Sandy loves i]. ▷It-clefts

b. It is Kimi [Sandy loves i].

(7) [Whati Sandy loves i] is Kimi. ▷Pseudoclefts

And more. . .
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A syntactic link is needed

(8) a. Kimi, Sandy trusts i.

b. [On Kim]i, Sandy depends i.

(9) a. *[On Kim]i, Sandy trusts i.

b. *Kimi, Sandy depends i.

(10) a. Kimi, Ada believes Bob knows Sandy trusts i.

b. [On Kim]i, Ada believes Bob knows Sandy depends i.

(11) a. *[On Kim]i, Ada believes Bob knows Sandy trusts i.

b. *Kimi, Ada believes Bob knows Sandy depends i.

This link has to be established for an unbounded length.
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Bounded vs unbounded

(12) a. Sandyi is hard to love i. ▷Tough construction

b. [This question]i is tough to answer i.

c. Kimi is easy (for John) to please i.

d. Kimi is easy to prove that Mary asked Paul to bribe i.

(13) a. Kim seems to love Sandy. ▷raising

b. Kim wants to prove that. ▷control

What is the difference to the raising/control construction?
The corresponding dependencies in the raising/control construction are
bounded.
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Case and word order in German

because the man gives the book to the child

weil der Mann dem Kind das Buch gibt
weil der Mann das Buch dem Kind gibt
weil das Buch der Mann dem Kind gibt
weil das Buch dem Kind der Mann gibt
weil dem Kind der Mann das Buch gibt
weil dem Kind das Buch der Mann gibt

from S. Müller’s course

man n 1 book n of child n 1

the q the q the q

give v 1

beucase x

unknown

BV BV BV

ARG1

ARG2
ARG3

ARG1ARG2
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Challenge 2: syntax–semantics mismatch?
S

[0,34)

VP
[12,34)

VP
[20,34)

VP
[27,34)

V
[30,34)

wait
[30,34)

TO
[27,29)

to
[27,29)

V
[20,26)

afford
[20,26)

V
[12,19)

ADV
[16,19)

not
[16,19)

V
[12,15)

can
[12,15)

NP
[0,11)

N
[4,11)

visitor
[4,11)

DET
[0,3)

the
[0,3)

visitor n 1
[4,11)

the q
[0,3)

afford v 1
[20,26)

wait v 1
[30,34)

can v modal
[12,15)

neg
[16,19)

Case 1

� visitor and can are next to each other
w.r.t. the linear-chain structure.
� syntex: visitor and can are also next
to each other as syntactic heads of
NP[0,11) and VP[12,34).
� semantics: visitor n 1 and
can v modal are not directly linked.
Words, phrases and semantic predicates
are anchored by the positions of their first
and last characters.
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Case 2

� syntax: visitor and wait are distant
from each other w.r.t. both the linear-
chain and the hierarchical structures.
� semantics: visitor n 1 and
wait v 1 are directly linked.
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Context-Free Graph Rewriting



Hypergraph

some q

boy n 1

want v to

go v 1

BV ARG1 ARG2

ARG1

A graph consists of:

• A set of nodes.

• A set of edges connecting two nodes.
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Hypergraph

some q

boy n 1

want v to

go v 1

BV ARG1 ARG2

ARG1

1

2
3

4

boy n 1

want v 1
go v 1

some q

arg1arg1

bv

arg2

A hypergraph adds:

• Hyperedges connecting any number of nodes.

• A single node can be treated as an edge.
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Hyperedge Replacement Grammar

X

ZY
want

go

Saarbrücken

arg1arg1

arg2

arg2

VP

X

Y

W

go

Saarbrücken

arg1arg2

VP

to go to Saarbrücken

X

ZY
want

arg1

arg2 V

want

λ ∼ external node

When we combine two graphs, we
don’t need they know every detail of
each other.

� Only very few nodes of each

graphs should be accessible. All

other nodes are internal; they won’t

participate in further composition.

E.g. the “Saarbrüecken” node is in-

visible from outside of the phrase

“to go to Saarbüecken”.

 The few accessible nodes are

called “external nodes”, and they

together make up an hyperedge.

X YVP

X Y ZV

X Y

V

Z

=⇒VP

X

Z
1

2

3

VP
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 Graphs are glued together at their

corresponding external nodes.

 After a new bigger graph is cre-

ated, some nodes no longer partici-

pate in further composition; we then

“forget” them.
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Symbol rewriting and graph rewriting

S

S

VPNP

S

VPNP

ND

S

VP

VPV

NP

ND

S

VP

VP

V

go

TO

to

V

want

NP

N

boys

D

some

=⇒ =⇒ =⇒ ∗
=⇒

CFG: symbol rewriting

When we derive according to a CFG, we iteratively rewrite non-terminal symbols.

E.g. S is rewritten to NP VP.
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Symbol rewriting and graph rewriting
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γ1
=⇒ γ3
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=⇒

1

2

3

NP

arg1
arg1

VP
→S

γ1
2 1

bv
D N→NP

γ3 1 2
arg2

V VP→VP

γ4

HRG: graph rewriting

We iteratively rewrite non-terminal hyperedges, i.e. hyperedges with non-terminal

labels. Each hyperedge is replaced by a hypergraph. Rules should and could be

linguistically-informed. γ1: control; γ3: quantification; γ4: verb–object
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Derivation structure is tree; derived structure is graph

boysome

want
go

arg1arg1

bv

arg2S

wantgo arg2 VP
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∅

to
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Some
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arg1arg1
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S

=⇒bv
D N

NP
⇐= arg2

V VP

VP

⇐=
V

VP
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Derivation structure is tree

• The derived structure is a complicated graph, while the derivation
structure is a seemingly simpler tree.

• A very general approach for understanding complex structures.

• For programming languages, compilers build abstract syntactic trees.

• For categorial grammars, categories like “S\NP” are merged along with
a tree.
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Scoring a derivation tree step-by-step

boysome

want
go

arg1arg1

bv

arg2S

want
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go
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∅
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bvD

Some
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X Y

V

Z

=⇒VP

X

Z
1

2

3

VP

enumerating trees

String-to-graph parsing:

argmax
T∈T (x)

score(T )

Graph-to-string Parsing:

argmax
T∈T (G)

score(T )
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Graph parsing and graph parsing

• Task 1: graph parsing (=string-to-graph parsing).

• Task 2: graph parsing (=graph-to-string parsing).

• To solve both tasks, we need to score a derivation tree, and search for
the best tree in different spaces.

• It is relatively straightforward to score a tree by summation over all
rules applied.

Task 1

The search space is denoted as T (x), where x is the input string. We
enumerate all trees that are compatble to x, or say all trees licensed by our
grammar.

argmax
T∈T (x)

ScoreTree(T ) = argmax
T∈T (x)

∑
r∈T

ScoreRule(r)
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Graph parsing and graph parsing

• Task 1: graph parsing (=string-to-graph parsing).

• Task 2: graph parsing (=graph-to-string parsing).

• To solve both tasks, we need to score a derivation tree, and search for
the best tree in different spaces.

• It is relatively straightforward to score a tree by summation over all
rules applied.

Task 2

The search space is denoted as T (G), where G is the input meaning
representation. We enumerate all trees that are compatble to G, again,
according to our grammar.

argmax
T∈T (G)

ScoreTree(T ) = argmax
T∈T (G)

∑
r∈T

ScoreRule(r)
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Example: more rules

NP VP−→S

γ1

Y
1

2

3

1

X−→Z

γ2

ARG1
ARG2

ARG1

1

visitor−→NP

γ3

1

neg ARG1−→ADV

γ4

1

VCP V−→VP

γ5 1

2

can ARG1−→V

γ6

1

2

wait ARG1−→VP

γ7

1

the BV−→DET

γ8 1

DET NP−→NP

γ9

1

ADV V−→V

γ10 1 2

3
afford

ARG1

ARG2−→V

γ11

3

12
V
3

1

2

VP
−→VCP

γ12
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A B C

DEF

canafford neg

waitvisitorthe

BV ARG1

ARG1
ARG2

ARG1 ARG1S

A B C

DE

canafford neg

wait

ARG1

ARG1
ARG2

ARG1 ARG1VP

A

E D
afford

wait

ARG1

ARG1
ARG2

VCP

E D

wait

ARG1
VPA

E D
afford ARG1

ARG2

V

B C

A can neg

ARG1

ARG1V

B

C

neg

ARG1

ADVB

A can

ARG1
V

EF

visitorthe

BV
NP

E

visitor

NPF

E
the

BV
DET

=⇒ γ1

=⇒ γ9

=⇒ γ5

γ10 ⇐=

γ12 ⇐=
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Readings

• Y. Chen and W. Sun. Parsing into Variable-in-situ Logico-Semantic
Graphs.

• Y. Ye and W. Sun. Exact yet Efficient Graph Parsing, Bi-directional
Locality and the Constructivist Hypothesis.
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