Lecture 5: Graph-Based Meaning Representations

Weiwei Sun

Department of Computer Science and Technology University of Cambridge

Michaelmas 2024/25

Lecture 5: Graph-Based Meaning Representations

- 1. From logical forms to semantic graphs
- 2. String to graph parsing
- 3. Factorisation-based approach

From Logical Forms to Semantic Graphs

• Every desk has a computer

more in later lecture on scope

- $\forall x (\mathsf{desk'}(x) \to (\exists y (\mathsf{computer'}(y) \land \mathsf{have'}(e, x, y))))$
- $\bullet \ \operatorname{every'}(x,\operatorname{\mathsf{desk'}}(x),\operatorname{\mathsf{a'}}(y,\operatorname{\mathsf{computer'}}(y),\operatorname{\mathsf{have'}}(e,x,y))) \\$

• Every desk has a computer

more in later lecture on scope

- $\forall x (\mathsf{desk'}(x) \rightarrow (\exists y (\mathsf{computer'}(y) \land \mathsf{have'}(e, x, y))))$
- $\bullet \ \operatorname{every'}(x,\operatorname{\mathsf{desk'}}(x),\operatorname{\mathsf{a'}}(y,\operatorname{\mathsf{computer'}}(y),\operatorname{\mathsf{have'}}(e,x,y))) \\$

• Every desk has a computer

more in later lecture on scope

- $\forall x (\mathsf{desk'}(x) \rightarrow (\exists y (\mathsf{computer'}(y) \land \mathsf{have'}(e, x, y))))$
- $\bullet \ \operatorname{every'}(x,\operatorname{\mathsf{desk'}}(x),\operatorname{\mathsf{a'}}(y,\operatorname{\mathsf{computer'}}(y),\operatorname{\mathsf{have'}}(e,x,y))) \\$

• Every desk has a computer

more in later lecture on scope

- $\forall x (\mathsf{desk'}(x) \rightarrow (\exists y (\mathsf{computer'}(y) \land \mathsf{have'}(e, x, y))))$
- $\bullet \ \operatorname{every'}(x,\operatorname{\mathsf{desk'}}(x),\operatorname{\mathsf{a'}}(y,\operatorname{\mathsf{computer'}}(y),\operatorname{\mathsf{have'}}(e,x,y))) \\$

• Every desk has a computer

more in later lecture on scope

- $\forall x (\mathsf{desk'}(x) \rightarrow (\exists y (\mathsf{computer'}(y) \land \mathsf{have'}(e, x, y))))$
- $\bullet \ \operatorname{every'}(x,\operatorname{\mathsf{desk'}}(x),\operatorname{\mathsf{a'}}(y,\operatorname{\mathsf{computer'}}(y),\operatorname{\mathsf{have'}}(e,x,y))) \\$

- Projecting "concept nodes" to "words".
- Relations between "concepts" \Rightarrow bi-lexical semantic dependencies
- Reasonably good though not as expressive as *conceptual* graphs.

- Projecting "concept nodes" to "words".
- Relations between "concepts" \Rightarrow bi-lexical semantic dependencies
- Reasonably good though not as expressive as *conceptual* graphs.

Weakness of bi-lexical semantic dependency graphs

- Projecting "concept nodes" to "words".
- Relations between "concepts" \Rightarrow bi-lexical semantic dependencies
- Reasonably good though not as expressive as *conceptual* graphs.

Weakness of bi-lexical semantic dependency graphs

What are the triggers of concepts?

- Projecting "concept nodes" to "words".
- Relations between "concepts" \Rightarrow bi-lexical semantic dependencies
- Reasonably good though not as expressive as *conceptual* graphs.

Weakness of bi-lexical semantic dependency graphs

String-to-Graph Parsing

String to Graph parsing

- String to Graph parsing is the task of turning a string into a semantic graph
- We always need to solve two main subtasks:
 - Task 1: Concept Identification
 - Task 2: Relation Extraction
- For some semantic graphs such as EDS we additionally need to do concept-to-word alignment (task 0).

String to Graph parsing: TASKS 1 and 2

- There are two methods for performing tasks 1 and 2.
- One is based on Factorisation
 - Make some global analysis
 - eg. for Task1, use sequence-labelling for concept identification
 - For task 2, use Maximum Subgraph Parsing for relation detection (bilinearity can be applied)
 - This is the classic approach for AMR parsing, but any semantic graph can be parsed this way, even MRS.
- The other is based on Composition
 - local
 - judge quality of each composition step
 - computation is by classification over rules
 - Tasks 1 and 2 are performed in parallel
 - This is the classic approach for MRS.
 - With some limitations, can also be applied to AMR.

Task 1: Concept Identification

Task 0: Concept-to-word Alignment Task 1: Concept Identification

Task 0: Concept-to-word Alignment

Task 0: Concept-to-word Alignment

Task 0: Concept-to-word Alignment Task 1: Concept Identification

Task 0: Concept-to-word Alignment

- Task 1: Concept Identification
- Task 2: Relation Detection

Task 0: Concept-to-word Alignment

- Task 1: Concept Identification
- Task 2: Relation Detection

Task 0: Concept-to-word Alignment

Task 1: Concept Identification

Task 2: Relation Detection

Task 0: Concept-to-word Alignment

Task 1: Concept Identification

Task 2: Relation Detection

The three sub-tasks should be done ((explicitly or implicitly) and (directly or indirectly))

Factorisation-Based Approach

The	drug	was	introduced		in	West		Germany		this	year
(_the_q)	(_drug_n_1)	Ø	(_introduce_v_to)	0	_in_p	(named("W") (proper_q)		named("G") (proper_q)	(_this_q_dem	_year_n_1
					compound				loc_nonsp		

Almost Sequence Labeling

- Some nodes are linked to sub-words.
- Some nodes are linked to multiple words.

- Preprocessing: every node is assigned to a single word
- Chunking: joint segmentation and tagging
 - **B**-x: begin of x
 - **I**-*x*: inside *x*

Almost Sequence Labeling

- Some nodes are linked to sub-words.
- Some nodes are linked to multiple words.

- Preprocessing: every node is assigned to a single word
- Chunking: joint segmentation and tagging
 - **B**-x: begin of x
 - **I**-*x*: inside *x*

Almost Sequence Labeling

- Some nodes are linked to sub-words.
- Some nodes are linked to multiple words.

- Preprocessing: every node is assigned to a single word
- Chunking: joint segmentation and tagging
 - **B**-x: begin of x
 - I-x: inside x

Almost Sequence Labeling

- Some nodes are linked to sub-words.
- Some nodes are linked to multiple words.

- Preprocessing: every node is assigned to a single word
- Chunking: joint segmentation and tagging
 - **B**-x: begin of x
 - **I**-*x*: inside *x*

Neural Tagging

Almost Sequence Labeling

- Preprocessing: every node is assigned to a single word
- Chunking: joint segmentation and tagging

Challenge

Like POS tagging but with thousands of labels.

Delexicalization

Neural Tagging

Almost Sequence Labeling

- Preprocessing: every node is assigned to a single word
- Chunking: joint segmentation and tagging

Challenge

Like POS tagging but with thousands of labels.

Delexicalization

Relation detection and maximum subgraph

Maximum Subgraph Parsing

- Start from a directed graph G = (V, E) that corresponds to the input sentence and a score function that evaluates the *goodness* of a graph.
- Search for a good subgraph $G' = (V, E' \subseteq E)$:

$$G' = \arg \max_{G^* = (V, E^* \subseteq E)} \operatorname{SCORE}(G^*)$$

First-order factorization

$$G' = \arg \max_{G^* = (V, E^* \subseteq E)} \sum_{e \in E^*} \text{SCOREPART}(e)$$

Use the inner product space

Bilinearity

•
$$f(\alpha_1 + \alpha_2, \beta) = f(\alpha_1, \beta) + f(\alpha_2, \beta)$$
, $f(k\alpha, \beta) = kf(\alpha, \beta)$

•
$$f(\alpha, \beta_1 + \beta_2) = f(\alpha, \beta_1) + f(\alpha, \beta_2), \quad f(\alpha, k\beta) = kf(\alpha, \beta)$$

If $\{e_1, e_2, ... e_n\}$ is a basis, then $f(e_i, e_j)$ ($\forall i, j : 1 \leq i, j \leq n$) identifies f.

Inner product $\langle \alpha, \beta \rangle$

A positive-definite symmetric bilinear function

- positive-definite: $\forall \alpha \neq \mathbf{0} : f(\alpha, \alpha) > 0$
- symmetric: $f(\alpha, \beta) = f(\beta, \alpha)$

Geometric intuitions

Inner product can be viewed as a generalisation of dot product. Inner products allow us to discuss *angles* and *lengths*.

$$|\alpha| = \sqrt{\langle \alpha, \alpha \rangle} \qquad \qquad \cos(\alpha, \beta) = \frac{\langle \alpha, \beta \rangle}{|\alpha| \cdot |\beta|}$$

Use the inner product space

Bilinearity

•
$$f(\alpha_1 + \alpha_2, \beta) = f(\alpha_1, \beta) + f(\alpha_2, \beta)$$
, $f(k\alpha, \beta) = kf(\alpha, \beta)$

•
$$f(\alpha, \beta_1 + \beta_2) = f(\alpha, \beta_1) + f(\alpha, \beta_2), \quad f(\alpha, k\beta) = kf(\alpha, \beta)$$

If $\{e_1, e_2, ... e_n\}$ is a basis, then $f(e_i, e_j)$ ($\forall i, j : 1 \leq i, j \leq n$) identifies f.

Inner product $\langle \alpha,\beta\rangle$

A positive-definite symmetric bilinear function

- positive-definite: $\forall \alpha \neq \mathbf{0} : f(\alpha, \alpha) > 0$
- symmetric: $f(\alpha, \beta) = f(\beta, \alpha)$

Geometric intuitions

Inner product can be viewed as a generalisation of dot product. Inner products allow us to discuss *angles* and *lengths*.

$$|\alpha| = \sqrt{\langle \alpha, \alpha \rangle} \qquad \qquad \cos(\alpha, \beta) = \frac{\langle \alpha, \beta \rangle}{|\alpha| \cdot |\beta|}$$

Biaffine parsing

on whiteboard

Readings

- Bender, E.M., Flickinger, D., Oepen, S., Packard, W. and Copestake, A. Layers of interpretation: On grammar and compositionality. ICWS 2015.
- T. Dozat and C. Manning. Deep Biaffine Attention for Neural Dependency Parsing.
- S. Oepen, A. Koller and W. Sun. ACL Tutorial on Graph-Based Meaning Representations: Design and Processing.