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Part I

Isabelle
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Material

• Isabelle part of this course based on book “Concrete
Semantics with Isabelle/HOL” (2014) by Tobias
Nipkow and Gerwin Klein

• Slides shamelessly copied from Tobias Nipkow
(errors are my own)
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Chapter 1

Programming and Proving in
Isabelle/HOL
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1 Overview of Isabelle/HOL

2 Type and function definitions

3 Induction Heuristics

4 Simplification
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HOL = Higher-Order Logic

HOL = Functional Programming + Logic

HOL has
• datatypes
• recursive functions
• logical operators

HOL is a programming language!

Higher-order = functions are values, too!

HOL Formulas:
• Equalities (term = term), e.g. 1 + 2 = 4
• Later: ∧, ∨, −→, ∀, . . .
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1 Overview of Isabelle/HOL
Types and terms
By example: types bool, nat and list
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Types
Basic syntax:

τ ::=

(τ)
| bool | nat | int | . . . base types
| ′a | ′b | . . . type variables
| τ ⇒ τ functions
| τ × τ pairs (ascii: *)
| τ list lists
| τ set sets
| . . . user-defined types

Convention: τ 1 ⇒ τ 2 ⇒ τ 3 ≡ τ 1 ⇒ (τ 2 ⇒ τ 3)
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Terms

Terms can be formed as follows:

• Function application: f t
is the call of function f with argument t.
If f has more arguments: f t1 t2 . . .
Examples: sin π, plus x y

• Function abstraction: λx. t
is the function with parameter x and result t,
i.e. “x 7→ t ”.
Example: λx. plus x x
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Terms
Basic syntax:

t ::=

(t)
| a constant or variable (identifier)
| t t function application
| λx. t function abstraction
| . . . lots of syntactic sugar

Examples: f (g x) y
h (λx. f (g x))

Convention: f t1 t2 t3 ≡ ((f t1) t2) t3

This language of terms is known as the λ-calculus.
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The computation rule of the λ-calculus is the
replacement of formal by actual parameters:

(λx. t) u = t[u/x]

where t[u/x] is “t with u substituted for x”.

Example: (λx. x + 5) 3 = 3 + 5

• The step from (λx. t) u to t[u/x] is called
β-reduction.

• Isabelle performs β-reduction automatically.
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Terms must be well-typed

(the argument of every function call must be of the right type)

Notation:
t :: τ means “t is a well-typed term of type τ”.

t :: τ 1 ⇒ τ 2 u :: τ 1
t u :: τ 2
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Type inference

Isabelle automatically computes the type of each variable
in a term.

This is called type inference.

In the presence of overloaded functions (functions with
multiple types) this is not always possible.

User can help with type annotations inside the term.
Example: f (x::nat)
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Overview_Demo.thy

(including an example of how to define a simple
function and prove a lemma about it)
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1 Overview of Isabelle/HOL
Types and terms
By example: types bool, nat and list
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Type bool

datatype bool = True | False

Predefined functions:
∧, ∨, −→, . . . :: bool ⇒ bool ⇒ bool

A formula is a term of type bool

if-and-only-if: = or ←→
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Type nat

datatype nat = 0 | Suc nat

Values of type nat: 0, Suc 0, Suc (Suc 0), . . .

Predefined functions: +, ∗, ... :: nat ⇒ nat ⇒ nat

! Numbers and arithmetic operations are overloaded:
0,1,2,... :: ′a, + :: ′a ⇒ ′a ⇒ ′a

You need type annotations: 1 :: nat, x + (y::nat)
unless the context is unambiguous: Suc z
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Nat_Demo.thy
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An informal proof
Lemma add m 0 = m

Proof by induction on m.
• Case 0 (the base case):

add 0 0 = 0 holds by definition of add.
• Case Suc m (the induction step):

We assume add m 0 = m,
the induction hypothesis (IH).
We need to show add (Suc m) 0 = Suc m.
The proof is as follows:
add (Suc m) 0 = Suc (add m 0) by def. of add

= Suc m by IH

20
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Induction on natural numbers

To prove P(n) for all natural numbers n, prove
• P(0) and
• for arbitrary but fixed n,

P(n) implies P(Suc(n)).

P(0)
∧

n. P(n) =⇒ P(Suc(n))
P(n)

21



Induction on natural numbers

To prove P(n) for all natural numbers n, prove
• P(0) and
• for arbitrary but fixed n,

P(n) implies P(Suc(n)).

P(0)
∧

n. P(n) =⇒ P(Suc(n))
P(n)

21



Type ′a list
Lists of elements of type ′a

datatype ′a list = Nil | Cons ′a ( ′a list)

Some lists: Nil, Cons 1 Nil, Cons 1 (Cons 2 Nil), . . .

Syntactic sugar:
• [] = Nil: empty list
• x # xs = Cons x xs:

list with first element x (“head”) and rest xs (“tail”)
• [x1, . . . , xn] = x1 # . . . xn # []

22
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Structural Induction for lists

To prove that P(xs) for all lists xs, prove
• P([]) and
• for arbitrary but fixed x and xs,

P(xs) implies P(x#xs).

P([])
∧

x xs. P(xs) =⇒ P(x#xs)
P(xs)
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List_Demo.thy
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An informal proof
Lemma app (app xs ys) zs = app xs (app ys zs)
Proof by induction on xs.
• Case Nil: app (app Nil ys) zs = app ys zs =

app Nil (app ys zs) holds by definition of app.
• Case Cons x xs: We assume app (app xs ys) zs =

app xs (app ys zs) (IH), and we need to show
app (app (Cons x xs) ys) zs =
app (Cons x xs) (app ys zs).
The proof is as follows:
app (app (Cons x xs) ys) zs
= Cons x (app (app xs ys) zs) by definition of app
= Cons x (app xs (app ys zs)) by IH
= app (Cons x xs) (app ys zs) by definition of app

25



Large library: HOL/List.thy

Included in Main.

Don’t reinvent, reuse!

Predefined: xs @ ys (append), length, and map
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1 Overview of Isabelle/HOL

2 Type and function definitions

3 Induction Heuristics

4 Simplification
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2 Type and function definitions
Type definitions
Function definitions
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Type synonyms
type_synonym name = τ

Introduces a synonym name for type τ

Examples
type_synonym string = char list
type_synonym ( ′a, ′b)foo = ′a list × ′b list

Type synonyms are expanded after parsing
and are not present in internal representation and output
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datatype — the general case
datatype (α1, . . . , αn)t = C1 τ1,1 . . . τ1,n1

| . . .
| Ck τk,1 . . . τk,nk

• Types: Ci :: τi,1 ⇒ · · · ⇒ τi,ni ⇒ (α1, . . . , αn)t
• Distinctness: Ci . . . 6= Cj . . . if i 6= j
• Injectivity: (Ci x1 . . . xni = Ci y1 . . . yni) =

(x1 = y1 ∧ · · · ∧ xni = yni)

Distinctness and injectivity are applied automatically
Induction must be applied explicitly
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Case expressions
Datatype values can be taken apart with case:

(case xs of [] ⇒ . . . | y#ys ⇒ ... y ... ys ...)

Wildcards: _
(case m of 0 ⇒ Suc 0 | Suc _ ⇒ 0)

Nested patterns:
(case xs of [0] ⇒ 0 | [Suc n] ⇒ n | _ ⇒ 2)

Complicated patterns mean complicated proofs!
Need ( ) in context
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Tree_Demo.thy
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The option type

datatype ′a option = None | Some ′a

If ′a has values a1, a2, . . .
then ′a option has values None, Some a1, Some a2, . . .

Typical application:
fun lookup :: ( ′a × ′b) list ⇒ ′a ⇒ ′b option where
lookup [] x = None |
lookup ((a, b) # ps) x =
(if a = x then Some b else lookup ps x)
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2 Type and function definitions
Type definitions
Function definitions
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Non-recursive definitions

Example
definition sq :: nat ⇒ nat where sq n = n∗n

No pattern matching, just f x1 . . . xn = . . .
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The danger of nontermination

How about f x = f x + 1 ?

Subtract f x on both sides.
=⇒ 0 = 1

! All functions in HOL must be total !
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Key features of fun

• Pattern-matching over datatype constructors

• Order of equations matters

• Termination must be provable automatically
by size measures

• Proves customized induction schema
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Example: separation

fun sep :: ′a ⇒ ′a list ⇒ ′a list where
sep a (x#y#zs) = x # a # sep a (y#zs) |
sep a xs = xs
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Example: Ackermann

fun ack :: nat ⇒ nat ⇒ nat where
ack 0 n = Suc n |
ack (Suc m) 0 = ack m (Suc 0) |
ack (Suc m) (Suc n) = ack m (ack (Suc m) n)

Terminates because the arguments decrease
lexicographically with each recursive call:
• (Suc m, 0) > (m, Suc 0)
• (Suc m, Suc n) > (Suc m, n)
• (Suc m, Suc n) > (m, _)
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1 Overview of Isabelle/HOL

2 Type and function definitions

3 Induction Heuristics

4 Simplification
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Basic induction heuristics

Theorems about recursive functions
are proved by induction

Induction on argument number i of f
if f is defined by recursion on argument number i
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A tail recursive reverse
Our initial reverse:
fun rev :: ′a list ⇒ ′a list where
rev [] = [] |
rev (x#xs) = rev xs @ [x]

A tail recursive version:
fun itrev :: ′a list ⇒ ′a list ⇒ ′a list where
itrev [] ys = ys |
itrev (x#xs) ys = itrev xs (x#ys)

lemma itrev xs [] = rev xs
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Induction_Demo.thy

Generalisation
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Generalisation

• Replace constants by variables

• Generalize free variables
• by arbitrary in induction proof
• (or by universal quantifier in formula)

44



Generalisation

• Replace constants by variables

• Generalize free variables
• by arbitrary in induction proof
• (or by universal quantifier in formula)

44



So far, all proofs were by structural induction

because all functions were primitive recursive.
In each induction step, 1 constructor is added.
In each recursive call, 1 constructor is removed.
Now: induction for complex recursion patterns.
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Computation Induction

Example
fun div2 :: nat ⇒ nat where
div2 0 = 0 |
div2 (Suc 0) = 0 |
div2 (Suc(Suc n)) = Suc(div2 n)

 induction rule div2.induct:

P(0) P(Suc 0)

∧
n.

P(n) =⇒ P(Suc(Suc n))
P(m)
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Computation Induction
If f :: τ ⇒ τ ′ is defined by fun, a special induction
schema is provided to prove P(x) for all x :: τ :

for each defining equation

f (e) = . . . f (r1) . . . f (rk) . . .

prove P(e) assuming P(r1), . . . ,P(rk).

Induction follows course of (terminating!) computation
Motto: properties of f are best proved by rule f.induct
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How to apply f.induct

If f :: τ1 ⇒ · · · ⇒ τn ⇒ τ ′:

(induction a1 . . . an rule: f.induct)

Heuristic:
• there should be a call f a1 . . . an in your goal
• ideally the ai should be variables.

48



How to apply f.induct

If f :: τ1 ⇒ · · · ⇒ τn ⇒ τ ′:

(induction a1 . . . an rule: f.induct)

Heuristic:
• there should be a call f a1 . . . an in your goal
• ideally the ai should be variables.

48



How to apply f.induct

If f :: τ1 ⇒ · · · ⇒ τn ⇒ τ ′:

(induction a1 . . . an rule: f.induct)

Heuristic:
• there should be a call f a1 . . . an in your goal

• ideally the ai should be variables.

48



How to apply f.induct

If f :: τ1 ⇒ · · · ⇒ τn ⇒ τ ′:

(induction a1 . . . an rule: f.induct)

Heuristic:
• there should be a call f a1 . . . an in your goal
• ideally the ai should be variables.

48



Induction_Demo.thy

Computation Induction
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1 Overview of Isabelle/HOL

2 Type and function definitions

3 Induction Heuristics

4 Simplification
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Simplification means . . .

Using equations l = r from left to right

As long as possible

Terminology: equation  simplification rule

Simplification = (Term) Rewriting
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An example

Equations:

0 + n = n (1)
(Suc m) + n = Suc (m + n) (2)

(Suc m ≤ Suc n) = (m ≤ n) (3)
(0 ≤ m) = True (4)

Rewriting:

0 + Suc 0 ≤ Suc 0 + x (1)
=

Suc 0 ≤ Suc 0 + x (2)
=

Suc 0 ≤ Suc (0 + x) (3)
=

0 ≤ 0 + x (4)
=

True

52
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Conditional rewriting
Simplification rules can be conditional:

[[ P1; . . . ; Pk ]] =⇒ l = r

is applicable only if all Pi can be proved first,
again by simplification.

Example
p(0) = True

p(x) =⇒ f (x) = g(x)
We can simplify f (0) to g(0) but
we cannot simplify f (1) because p(1) is not provable.
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Termination
Simplification may not terminate.

Isabelle uses simp-rules (almost) blindly from left to right.

Example: f (x) = g(x), g(x) = f (x)

Principle:
[[ P1; . . . ; Pk ]] =⇒ l = r

is suitable as a simp-rule only
if l is “bigger” than r and each Pi

n < m =⇒ (n < Suc m) = True

YES

Suc n < m =⇒ (n < m) = True

NO
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Termination
Simplification may not terminate.

Isabelle uses simp-rules (almost) blindly from left to right.

Example: f (x) = g(x), g(x) = f (x)
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Proof method simp
Goal: 1. [[ P1; . . . ; Pm ]] =⇒ C

apply(simp add: eq1 . . . eqn)

Simplify P1 . . . Pm and C using
• lemmas with attribute simp
• rules from fun and datatype
• additional lemmas eq1 . . . eqn
• assumptions P1 . . . Pm

Variations:
• (simp . . . del: . . . ) removes simp-lemmas
• add and del are optional
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auto versus simp

• auto acts on all subgoals
• simp acts only on subgoal 1

• auto applies simp and more

• auto can also be modified:
(auto simp add: . . . simp del: . . . )
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Rewriting with definitions

Definitions (definition) must be used explicitly:

(simp add: f_def . . . )

f is the function whose definition is to be unfolded.
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Case splitting with simp/auto
Automatic:

P (if A then s else t)
=

(A −→ P(s)) ∧ (¬A −→ P(t))

By hand:

P (case e of 0 ⇒ a | Suc n ⇒ b)
=

(e = 0 −→ P(a)) ∧ (∀ n. e = Suc n −→ P(b))

Proof method: (simp split: nat.split)
Or auto. Similar for any datatype t: t.split
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Simp_Demo.thy
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Chapter 2

Case Study: IMP Expressions
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This section introduces

arithmetic and boolean expressions

of our imperative language IMP.

IMP commands are introduced later.
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5 Case Study: IMP Expressions
Arithmetic Expressions
Boolean Expressions
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Concrete and abstract syntax
Concrete syntax: strings, eg "a+5*b"

Abstract syntax: trees, eg +
@

@
@

�
�

�a *
A
AA

�
��

5 b

Parser: function from strings to trees
Linear view of trees: terms, eg Plus a (Times 5 b)

Abstract syntax trees/terms are datatype values!
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Concrete syntax is defined by a context-free grammar, eg

a ::= n | x | (a) | a + a | a ∗ a | . . .

where n can be any natural number and x any variable.

We focus on abstract syntax
which we introduce via datatypes.
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Datatype aexp

Variable names are strings, values are integers:
type_synonym vname = string
datatype aexp = N int | V vname | Plus aexp aexp

Concrete Abstract
5 N 5
x V ′′x ′′
x+y Plus (V ′′x ′′) (V ′′y ′′)
2+(z+3) Plus (N 2) (Plus (V ′′z ′′) (N 3))
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Warning

This is syntax, not (yet) semantics!

N 0 6= Plus (N 0) (N 0)
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Warning

This is syntax, not (yet) semantics!

N 0 6= Plus (N 0) (N 0)
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The (program) state

What is the value of x+1?

• The value of an expression
depends on the value of its variables.

• The value of all variables is recorded in the state.
• The state is a function from variable names to

values:
type_synonym val = int
type_synonym state = vname ⇒ val
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Function update notation

If f :: τ 1 ⇒ τ 2 and a :: τ 1 and b :: τ 2 then

f (a := b)

is the function that behaves like f
except that it returns b for argument a.

f(a := b) = (λx. if x = a then b else f x)
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How to write down a state

Some states:
• λx. 0

• (λx. 0)( ′′a ′′ := 3)
• ((λx. 0)( ′′a ′′ := 5))( ′′x ′′ := 3)

Nicer notation defined in AExp.thy:

< ′′a ′′ := 5, ′′x ′′ := 3, ′′y ′′ := 7>

Maps everything to 0, but ′′a ′′ to 5, ′′x ′′ to 3, etc.
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AExp.thy
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5 Case Study: IMP Expressions
Arithmetic Expressions
Boolean Expressions
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BExp.thy
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This was easy.

Because evaluation of expressions always terminates.
But execution of programs may not terminate.
Hence we cannot define it by a total recursive function.

We need more logical machinery
to define program execution and reason about it.
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Chapter 3

Logic and Proof
Beyond Equality
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6 Logical Formulas

7 Proof Automation

8 Single Step Proofs

9 Inductive Definitions
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Syntax (in decreasing precedence):

form ::= (form) | term = term | ¬form
| form ∧ form | form ∨ form | form −→ form
| ∀x. form | ∃x. form

Examples:
¬ A ∧ B ∨ C ≡ ((¬ A) ∧ B) ∨ C

s = t ∧ C ≡ (s = t) ∧ C
A ∧ B = B ∧ A ≡ A ∧ (B = B) ∧ A
∀ x. P x ∧ Q x ≡ ∀ x. (P x ∧ Q x)

Input syntax: ←→ (same precedence as −→)
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Variable binding convention:

∀ x y. P x y ≡ ∀ x. ∀ y. P x y

Similarly for ∃ and λ.
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Variable binding convention:
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Warning

Quantifiers have low precedence
and need to be parenthesized (if in some context)

! P ∧ ∀ x. Q x  P ∧ (∀ x. Q x) !
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Mathematical symbols
and their ascii representations

∀ \<forall> ALL
∃ \<exists> EX
λ \<lambda> %
−→ -->
←→ <->
∧ /\ &
∨ \/ |
¬ \<not> ~
6= \<noteq> ~=
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Sets over type ′a
′a set

• {}, {e1,. . . ,en}
• e ∈ A, A ⊆ B
• A ∪ B, A ∩ B, A − B, − A
• . . .

∈ \<in> :
⊆ \<subseteq> <=
∪ \<union> Un
∩ \<inter> Int
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Set comprehension

• {x. P} where x is a variable

• But not {t. P} where t is a proper term
• Instead: {t |x y z. P}

is short for {v. ∃ x y z. v = t ∧ P}
where x, y, z are the free variables in t

84



Set comprehension

• {x. P} where x is a variable
• But not {t. P} where t is a proper term

• Instead: {t |x y z. P}
is short for {v. ∃ x y z. v = t ∧ P}
where x, y, z are the free variables in t

84



Set comprehension

• {x. P} where x is a variable
• But not {t. P} where t is a proper term
• Instead: {t |x y z. P}

is short for {v. ∃ x y z. v = t ∧ P}
where x, y, z are the free variables in t

84



Set comprehension

• {x. P} where x is a variable
• But not {t. P} where t is a proper term
• Instead: {t |x y z. P}

is short for {v. ∃ x y z. v = t ∧ P}
where x, y, z are the free variables in t

84



6 Logical Formulas

7 Proof Automation

8 Single Step Proofs

9 Inductive Definitions
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simp and auto

simp: rewriting and a bit of arithmetic
auto: rewriting and a bit of arithmetic, logic and sets

• Show you where they got stuck
• highly incomplete
• Extensible with new simp-rules

Exception: auto acts on all subgoals
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fastforce

• rewriting, logic, sets, relations and a bit of arithmetic.

• incomplete but better than auto.
• Succeeds or fails
• Extensible with new simp-rules
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blast

• A complete proof search procedure for FOL . . .

• . . . but (almost) without “=”
• Covers logic, sets and relations
• Succeeds or fails
• Extensible with new deduction rules
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Automating arithmetic

arith:

• proves linear formulas (no “∗”)
• complete for quantifier-free real arithmetic
• complete for first-order theory of nat and int

(Presburger arithmetic)
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Sledgehammer
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Architecture:

Isabelle

Goal
& filtered library ↓ ↑ Proof

external
ATPs1

Characteristics:
• Sometimes it works,
• sometimes it doesn’t.

Do you feel lucky?

1Automatic Theorem Provers
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by(proof-method)

≈

apply(proof-method)
done
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Auto_Proof_Demo.thy
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6 Logical Formulas

7 Proof Automation

8 Single Step Proofs

9 Inductive Definitions
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Step-by-step proofs can be necessary if automation fails
and you have to explore where and why it failed by
taking the goal apart.
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What are these ?-variables ?

After you have finished a proof, Isabelle turns all free
variables V in the theorem into ?V.
Example: theorem conjI: [[?P; ?Q]] =⇒ ?P ∧ ?Q
These ?-variables can later be instantiated:
• By hand:
conjI[of "a=b" "False"]  
[[a = b; False]] =⇒ a = b ∧ False

• By unification:
unifying ?P ∧ ?Q with a=b ∧ False
sets ?P to a=b and ?Q to False.
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Rule application

Example: rule: [[?P; ?Q]] =⇒ ?P ∧ ?Q
subgoal: 1. . . . =⇒ A ∧ B

Result: 1. . . . =⇒ A
2. . . . =⇒ B

The general case: applying rule [[ A1; . . . ; An ]] =⇒ A
to subgoal . . . =⇒ C:
• Unify A and C
• Replace C with n new subgoals A1 . . . An

apply(rule xyz)
“Backchaining”
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Typical backwards rules
?P ?Q
?P ∧ ?Q conjI

?P =⇒ ?Q
?P −→ ?Q impI

∧
x. ?P x
∀ x. ?P x allI

?P =⇒ ?Q ?Q =⇒ ?P
?P = ?Q iffI

They are known as introduction rules
because they introduce a particular connective.
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Automating intro rules

If r is a theorem [[ A1; . . . ; An ]] =⇒ A then

(blast intro: r)

allows blast to backchain on r during proof search.
Example:

theorem le_trans: [[ ?x ≤ ?y; ?y ≤ ?z ]] =⇒ ?x ≤ ?z
goal 1. [[ a ≤ b; b ≤ c; c ≤ d ]] =⇒ a ≤ d

proof apply(blast intro: le_trans)
Also works for auto and fastforce

Can greatly increase the search space!
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Forward proof: OF
If r is a theorem A =⇒ B

and s is a theorem that unifies with A then

r[OF s]

is the theorem obtained by proving A with s.

Example: theorem refl: ?t = ?t

conjI[OF refl[of "a"]]
 

?Q =⇒ a = a ∧ ?Q
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The general case:

If r is a theorem [[ A1; . . . ; An ]] =⇒ A
and r1, . . . , rm (m≤n) are theorems then

r[OF r1 . . . rm]

is the theorem obtained
by proving A1 . . . Am with r1 . . . rm.

Example: theorem refl: ?t = ?t

conjI[OF refl[of "a"] refl[of "b"]]
 

a = a ∧ b = b
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From now on: ? mostly suppressed on slides
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Single_Step_Demo.thy
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=⇒ versus −→

=⇒ is part of the Isabelle framework. It structures
theorems and proof states: [[ A1; . . . ; An ]] =⇒ A

−→ is part of HOL and can occur inside the logical
formulas Ai and A.

Phrase theorems like this [[ A1; . . . ; An ]] =⇒ A
not like this A1 ∧ . . . ∧ An −→ A
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6 Logical Formulas

7 Proof Automation

8 Single Step Proofs

9 Inductive Definitions
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Example: even numbers
Informally:

• 0 is even
• If n is even, so is n + 2
• These are the only even numbers

In Isabelle/HOL:
inductive ev :: nat ⇒ bool
where

ev 0 |
ev n =⇒ ev (n + 2)
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An easy proof: ev 4

ev 0 =⇒ ev 2 =⇒ ev 4
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Consider

fun evn :: nat ⇒ bool where
evn 0 = True |
evn (Suc 0) = False |
evn (Suc (Suc n)) = evn n

A trickier proof: ev m =⇒ evn m
By induction on the structure of the derivation of ev m
Two cases: ev m is proved by
• rule ev 0

=⇒ m = 0 =⇒ evn m = True
• rule ev n =⇒ ev (n+2)

=⇒ m = n+2 and evn n (IH)
=⇒ evn m = evn (n+2) = evn n = True
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Rule induction for ev
To prove

ev n =⇒ P n

by rule induction on ev n we must prove

• P 0
• P n =⇒ P(n+2)

Rule ev.induct:

ev n P 0
∧

n. [[ ev n; P n ]] =⇒ P(n+2)
P n
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Format of inductive definitions

inductive I :: τ ⇒ bool where

[[ I a1; . . . ; I an ]] =⇒ I a |
...

Note:
• I may have multiple arguments.
• Each rule may also contain side conditions not

involving I.
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Rule induction in general
To prove

I x =⇒ P x

by rule induction on I x

we must prove for every rule

[[ I a1; . . . ; I an ]] =⇒ I a

that P is preserved:

[[ I a1; P a1; . . . ; I an; P an ]] =⇒ P a
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!
Rule induction is absolutely central

to (operational) semantics
and the rest of this lecture course

!
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Inductive_Demo.thy
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Inductively defined sets

inductive_set I :: τ set where

[[ a1 ∈ I; . . . ; an ∈ I ]] =⇒ a ∈ I |
...

Difference to inductive: I can later be used with set
theoretic operators, eg I ∪ . . .
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Chapter 4

Isar: A Language for
Structured Proofs
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Apply scripts

• unreadable

• hard to maintain
• do not scale

No structure!
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Apply scripts versus Isar proofs

Apply script = assembly language program

Isar proof = structured program with assertions

But: apply still useful for proof exploration
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A typical Isar proof

proof
assume formula0
have formula1 by simp
...
have formulan by blast
show formulan+1 by . . .

qed

proves formula0 =⇒ formulan+1
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Isar core syntax
proof = proof [method] step∗ qed

| by method

method = (simp . . . ) | (blast . . . ) | (induction . . . ) | . . .

step = fix variables (
∧

)
| assume prop (=⇒)
| [from fact+] (have | show) prop proof

prop = [name:] ”formula”

fact = name | . . .
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Isar_Demo.thy

Isar by example
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Further reading

• More detailed Isar introduction in Chapter 5 of
”Concrete Semantics”

• Isabelle/Isar reference manual (isar-ref.pdf), in
particular Chapter 6
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