Proof Assistants

Thomas Bauereiss Meven Lennon-Bertrand

Department of Computer Science and Technology University of Cambridge

Michaelmas 2024

Chapter 7

Semantics of IMP: A Simple Imperative Language

1 IMP Commands

2 Big-Step Semantics

3 Small-Step Semantics

1 IMP Commands

2 Big-Step Semantics

3 Small-Step Semantics

Concrete syntax:

com ::= SKIP

Concrete syntax:

Concrete syntax:

Concrete syntax:

com ::= SKIP | string ::= aexp | com ;; com | IF bexp THEN com ELSE com

Concrete syntax:

com ::= SKIP
 | string ::= aexp
 | com ;; com
 | IF bexp THEN com ELSE com
 | WHILE bexp DO com

Abstract syntax:

datatype com = SKIP | Assign string aexp | Seq com com | If bexp com com | While bexp com

Com.thy

1 IMP Commands

2 Big-Step Semantics

3 Small-Step Semantics

Concrete syntax:

 $(com, initial-state) \Rightarrow final-state$

Concrete syntax:

 $(com, initial-state) \Rightarrow final-state$

Intended meaning of $(c, s) \Rightarrow t$:

Concrete syntax:

 $(com, initial-state) \Rightarrow final-state$

Intended meaning of $(c, s) \Rightarrow t$: Command *c* started in state *s* terminates in state *t*

Concrete syntax:

 $(com, initial-state) \Rightarrow final-state$

Intended meaning of $(c, s) \Rightarrow t$:

Command c started in state s terminates in state t

" \Rightarrow " here not type!

$(SKIP, s) \Rightarrow s$

$$(SKIP, s) \Rightarrow s$$

$$(x ::= a, s) \Rightarrow s(x := aval \ a \ s)$$

$$(SKIP, s) \Rightarrow s$$
$$(x := a, s) \Rightarrow s(x = aval \ a \ s)$$
$$\frac{(c_1, s_1) \Rightarrow s_2 \quad (c_2, s_2) \Rightarrow s_3}{(c_1;; c_2, s_1) \Rightarrow s_3}$$

$\frac{bval \ b \ s}{(IF \ b \ THEN \ c_1 \ ELSE \ c_2, \ s) \Rightarrow t}$

$$\frac{bval \ b \ s}{(IF \ b \ THEN \ c_1 \ ELSE \ c_2, \ s) \Rightarrow t}$$
$$\frac{\neg \ bval \ b \ s}{(IF \ b \ THEN \ c_1 \ ELSE \ c_2, \ s) \Rightarrow t}$$

$\frac{\neg \ bval \ b \ s}{(WHILE \ b \ DO \ c, \ s) \Rightarrow s}$

$$\frac{\neg \ bval \ b \ s}{(WHILE \ b \ DO \ c, \ s) \Rightarrow s}$$

$$\frac{bval \ b \ s_1}{(WHILE \ b \ DO \ c, \ s_2) \Rightarrow s_3}$$

$$(WHILE \ b \ DO \ c, \ s_1) \Rightarrow s_2$$

Logically speaking

 $(c, s) \Rightarrow t$

is just infix syntax for

 $big_step (c,s) t$

Logically speaking

 $(c, s) \Rightarrow t$

is just infix syntax for

 $big_step (c,s) t$

where

 $big_step :: com \times state \Rightarrow state \Rightarrow bool$

is an inductively defined predicate.

Big_Step.thy

Semantics

•
$$(SKIP, s) \Rightarrow t$$
 ?

•
$$(SKIP, s) \Rightarrow t$$
 ? $t = s$

•
$$(SKIP, s) \Rightarrow t$$
 ? $t = s$

•
$$(x ::= a, s) \Rightarrow t$$
 ?

•
$$(SKIP, s) \Rightarrow t$$
 ? $t = s$

•
$$(x ::= a, s) \Rightarrow t$$
? $t = s(x := aval a s)$

•
$$(SKIP, s) \Rightarrow t$$
 ? $t = s$

•
$$(x ::= a, s) \Rightarrow t$$
?

•
$$(c_1;; c_2, s_1) \Rightarrow s_3$$
 ?

$$t = s(x := aval \ a \ s)$$

•
$$(SKIP, s) \Rightarrow t$$
 ? $t = s$

•
$$(x ::= a, s) \Rightarrow t$$
? $t = s(x := aval a s)$

•
$$(c_1;; c_2, s_1) \Rightarrow s_3$$
 ?
 $\exists s_2. (c_1, s_1) \Rightarrow s_2 \land (c_2, s_2) \Rightarrow s_3$

•
$$(SKIP, s) \Rightarrow t$$
 ? $t = s$

- $(x ::= a, s) \Rightarrow t$? t = s(x := aval a s)
- $(c_1;; c_2, s_1) \Rightarrow s_3$? $\exists s_2. (c_1, s_1) \Rightarrow s_2 \land (c_2, s_2) \Rightarrow s_3$
- (IF b THEN c_1 ELSE c_2 , s) \Rightarrow t ?

•
$$(SKIP, s) \Rightarrow t$$
 ? $t = s$

- $(x ::= a, s) \Rightarrow t$? t = s(x := aval a s)
- $(c_1;; c_2, s_1) \Rightarrow s_3$? $\exists s_2. (c_1, s_1) \Rightarrow s_2 \land (c_2, s_2) \Rightarrow s_3$
- (IF b THEN c_1 ELSE c_2 , s) \Rightarrow t ? bval b s \land (c_1 , s) \Rightarrow t \lor \neg bval b s \land (c_2 , s) \Rightarrow t

What can we deduce from

•
$$(SKIP, s) \Rightarrow t$$
 ? $t = s$

- $(x ::= a, s) \Rightarrow t$? t = s(x := aval a s)
- $(c_1;; c_2, s_1) \Rightarrow s_3$? $\exists s_2. (c_1, s_1) \Rightarrow s_2 \land (c_2, s_2) \Rightarrow s_3$
- (IF b THEN c_1 ELSE c_2 , s) \Rightarrow t ? bval b s \land (c_1 , s) \Rightarrow t \lor \neg bval b s \land (c_2 , s) \Rightarrow t

• $(w, s) \Rightarrow t$ where $w = WHILE \ b \ DO \ c$?

What can we deduce from

•
$$(SKIP, s) \Rightarrow t$$
 ? $t = s$

• $(x ::= a, s) \Rightarrow t$? t = s(x := aval a s)

•
$$(c_1;; c_2, s_1) \Rightarrow s_3$$
 ?
 $\exists s_2. (c_1, s_1) \Rightarrow s_2 \land (c_2, s_2) \Rightarrow s_3$

- (IF b THEN c_1 ELSE c_2 , s) \Rightarrow t ? bval b s \land (c_1 , s) \Rightarrow t \lor \neg bval b s \land (c_2 , s) \Rightarrow t
- $(w, s) \Rightarrow t$ where $w = WHILE \ b \ DO \ c$? $\neg \ bval \ b \ s \land t = s \lor$ $bval \ b \ s \land (\exists s'. (c, s) \Rightarrow s' \land (w, s') \Rightarrow t)$

Automating rule inversion

Isabelle command **inductive_cases** produces theorems that perform rule inversions automatically.

$$\frac{(c_1;; c_2, s_1) \Rightarrow s_3}{\exists s_2. (c_1, s_1) \Rightarrow s_2 \land (c_2, s_2) \Rightarrow s_3}$$

$$\frac{(c_1;; c_2, s_1) \Rightarrow s_3}{\exists s_2. (c_1, s_1) \Rightarrow s_2 \land (c_2, s_2) \Rightarrow s_3}$$

is logically equivalent to

$$(c_1;; c_2, s_1) \Rightarrow s_3$$

$$\underbrace{\bigwedge s_2. \ \llbracket (c_1, s_1) \Rightarrow s_2; (c_2, s_2) \Rightarrow s_3 \rrbracket \Longrightarrow P}_{P}$$

$$\frac{(c_1;; c_2, s_1) \Rightarrow s_3}{\exists s_2. (c_1, s_1) \Rightarrow s_2 \land (c_2, s_2) \Rightarrow s_3}$$

is logically equivalent to

$$\frac{(c_1;; c_2, s_1) \Rightarrow s_3}{\bigwedge s_2. \ [(c_1, s_1) \Rightarrow s_2; (c_2, s_2) \Rightarrow s_3]] \Longrightarrow P}{P}$$

Replaces assm $(c_1;; c_2, s_1) \Rightarrow s_3$ by two assms $(c_1, s_1) \Rightarrow s_2$ and $(c_2, s_2) \Rightarrow s_3$

$$\frac{(c_1;; c_2, s_1) \Rightarrow s_3}{\exists s_2. (c_1, s_1) \Rightarrow s_2 \land (c_2, s_2) \Rightarrow s_3}$$

is logically equivalent to

$$\frac{(c_1;; c_2, s_1) \Rightarrow s_3}{\bigwedge s_2 \colon [(c_1, s_1) \Rightarrow s_2; (c_2, s_2) \Rightarrow s_3]] \Longrightarrow P}{P}$$

Replaces assm $(c_1;; c_2, s_1) \Rightarrow s_3$ by two assms $(c_1, s_1) \Rightarrow s_2$ and $(c_2, s_2) \Rightarrow s_3$ (with a new fixed s_2).

$$\frac{(c_1;; c_2, s_1) \Rightarrow s_3}{\exists s_2. (c_1, s_1) \Rightarrow s_2 \land (c_2, s_2) \Rightarrow s_3}$$

is logically equivalent to

$$\frac{(c_1;; c_2, s_1) \Rightarrow s_3}{\bigwedge s_2 \colon [(c_1, s_1) \Rightarrow s_2; (c_2, s_2) \Rightarrow s_3]] \Longrightarrow P}{P}$$

Replaces assm $(c_1;; c_2, s_1) \Rightarrow s_3$ by two assms $(c_1, s_1) \Rightarrow s_2$ and $(c_2, s_2) \Rightarrow s_3$ (with a new fixed s_2). No \exists and \land !

 $\frac{asm \quad asm_1 \Longrightarrow P \quad \dots \quad asm_n \Longrightarrow P}{P}$

$$\frac{asm \quad asm_1 \Longrightarrow P \quad \dots \quad asm_n \Longrightarrow P}{P}$$

(possibly with $\bigwedge \overline{x}$ in front of the $asm_i \Longrightarrow P$)

$$\frac{asm \quad asm_1 \Longrightarrow P \quad \dots \quad asm_n \Longrightarrow P}{P}$$

(possibly with $\bigwedge \overline{x}$ in front of the $asm_i \Longrightarrow P$)

Reading:

To prove a goal P with assumption asm, prove all $asm_i \Longrightarrow P$

$$\frac{asm \quad asm_1 \Longrightarrow P \quad \dots \quad asm_n \Longrightarrow P}{P}$$

(possibly with $\bigwedge \overline{x}$ in front of the $asm_i \Longrightarrow P$)

Reading:

To prove a goal P with assumption asm, prove all $asm_i \Longrightarrow P$

Example:

$$\frac{F \lor G \quad F \Longrightarrow P \quad G \Longrightarrow P}{P}$$

elim attribute

• Theorems with *elim* attribute are used automatically by *blast*, *fastforce* and *auto*

elim attribute

- Theorems with *elim* attribute are used automatically by *blast*, *fastforce* and *auto*
- Can also be added locally, eg (*blast elim:* ...)

elim attribute

- Theorems with *elim* attribute are used automatically by *blast*, *fastforce* and *auto*
- Can also be added locally, eg (*blast elim:* ...)
- Variant: *elim!* applies elim-rules eagerly.

Big_Step.thy

Rule inversion

Command equivalence

Two commands have the same input/output behaviour:

Command equivalence

Two commands have the same input/output behaviour:

$$c \sim c' \equiv (\forall s \ t. \ (c,s) \Rightarrow t \longleftrightarrow (c',s) \Rightarrow t)$$

Command equivalence

Two commands have the same input/output behaviour:

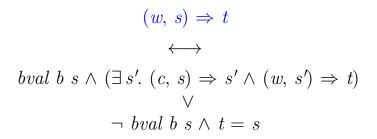
$$c \sim c' \equiv (\forall s \ t. \ (c,s) \Rightarrow t \longleftrightarrow (c',s) \Rightarrow t)$$

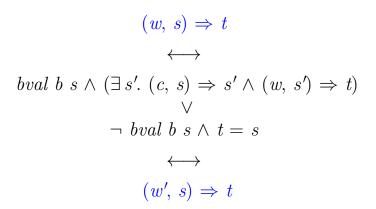
Example

$$w \sim w'$$

where $w = WHILE \ b \ DO \ c$ $w' = IF \ b \ THEN \ c;; \ w \ ELSE \ SKIP$

 $(w, s) \Rightarrow t$





$$(w, s) \Rightarrow t$$

$$\longleftrightarrow$$

$$bval \ b \ s \land (\exists s'. (c, s) \Rightarrow s' \land (w, s') \Rightarrow t)$$

$$\lor$$

$$\neg \ bval \ b \ s \land t = s$$

$$\longleftrightarrow$$

$$(w', s) \Rightarrow t$$

Using the rules and rule inversions for \Rightarrow .

Big_Step.thy

Command equivalence

Execution is deterministic

Any two executions of the same command in the same start state lead to the same final state:

$$(c, s) \Rightarrow t \implies (c, s) \Rightarrow t' \implies t = t'$$

Execution is deterministic

Any two executions of the same command in the same start state lead to the same final state:

$$(c, s) \Rightarrow t \implies (c, s) \Rightarrow t' \implies t = t'$$

Proof by rule induction, for arbitrary t'.

Big_Step.thy

Execution is deterministic

We cannot observe intermediate states/steps

We cannot observe intermediate states/steps

Example problem:

We cannot observe intermediate states/steps

Example problem:

(c,s) does not terminate iff $\nexists t$. $(c, s) \Rightarrow t$?

We cannot observe intermediate states/steps

Example problem:

(c,s) does not terminate iff $\nexists t$. $(c, s) \Rightarrow t$?

Needs a formal notion of nontermination to prove it.

We cannot observe intermediate states/steps

Example problem:

(c,s) does not terminate iff $\nexists t$. $(c, s) \Rightarrow t$?

Needs a formal notion of nontermination to prove it. Could be wrong if we have forgotten $a \Rightarrow$ rule. Big-step semantics cannot directly describe

nonterminating computations,

Big-step semantics cannot directly describe

- nonterminating computations,
- parallel computations.

Big-step semantics cannot directly describe

- nonterminating computations,
- parallel computations.

We need a finer grained semantics!

1 IMP Commands

2 Big-Step Semantics

3 Small-Step Semantics

Small-step semantics

Concrete syntax:

 $(com, state) \rightarrow (com, state)$

Small-step semantics

Concrete syntax:

 $(com, state) \rightarrow (com, state)$

Intended meaning of $(c, s) \rightarrow (c', s')$:

Small-step semantics

Concrete syntax:

$$(com, state) \rightarrow (com, state)$$

Intended meaning of $(c, s) \rightarrow (c', s')$:

The first step in the execution of c in state s leaves a "remainder" command c' to be executed in state s'.

Small-step semantics

Concrete syntax:

 $(com, state) \rightarrow (com, state)$

Intended meaning of $(c, s) \rightarrow (c', s')$:

The first step in the execution of c in state sleaves a "remainder" command c'to be executed in state s'.

Execution as finite or infinite reduction:

 $(c_1,s_1) \rightarrow (c_2,s_2) \rightarrow (c_3,s_3) \rightarrow \ldots$

Terminology

• A pair (*c*,*s*) is called a *configuration*.

Terminology

- A pair (*c*,*s*) is called a *configuration*.
- If $cs \rightarrow cs'$ we say that cs reduces to cs'.

Terminology

- A pair (*c*,*s*) is called a *configuration*.
- If $cs \rightarrow cs'$ we say that cs reduces to cs'.
- A configuration cs is *final* iff $\nexists cs'$. $cs \rightarrow cs'$

The intention:

(SKIP, s) is final

The intention:

(SKIP, s) is final

Why?

SKIP is the empty program.

The intention:

(SKIP, s) is final

Why?

SKIP is the empty program. Nothing more to be done.

$$(x::=a, s) \rightarrow$$

 $(x::=a, s) \rightarrow (SKIP, s(x:=aval \ a \ s))$

$$(x::=a, s) \rightarrow (SKIP, s(x:=aval \ a \ s))$$

 $(SKIP;; c, s) \rightarrow$

$$(x::=a, s) \rightarrow (SKIP, s(x:=aval a s))$$

 $(SKIP;; c, s) \rightarrow (c, s)$

$$(x::=a, s) \rightarrow (SKIP, s(x:=aval \ a \ s))$$
$$(SKIP;; c, s) \rightarrow (c, s)$$
$$\frac{(c_1, s) \rightarrow (c'_1, s')}{(c_1;; c_2, s) \rightarrow}$$

$$(x::=a, s) \to (SKIP, s(x := aval \ a \ s))$$
$$(SKIP;; c, s) \to (c, s)$$
$$\frac{(c_1, s) \to (c'_1, s')}{(c_1;; c_2, s) \to (c'_1;; c_2, s')}$$

 $bval \ b \ s$

 $(IF \ b \ THEN \ c_1 \ ELSE \ c_2, s) \rightarrow$

 $bval \ b \ s$

 $(IF \ b \ THEN \ c_1 \ ELSE \ c_2, s) \rightarrow (c_1, s)$

$bval \ b \ s$

 $(IF \ b \ THEN \ c_1 \ ELSE \ c_2, s) \rightarrow (c_1, s)$ $\neg \ bval \ b \ s$

 $(IF \ b \ THEN \ c_1 \ ELSE \ c_2, s) \rightarrow (c_2, s)$

$bval \ b \ s$

 $(IF \ b \ THEN \ c_1 \ ELSE \ c_2, s) \rightarrow (c_1, s)$ $\neg \ bval \ b \ s$ $(IF \ b \ THEN \ c_2 \ ELSE \ c_2, s) \rightarrow (c_1, s)$

 $(IF \ b \ THEN \ c_1 \ ELSE \ c_2, s) \rightarrow (c_2, s)$

 $(WHILE \ b \ DO \ c, \ s) \rightarrow$

$bval \ b \ s$

 $(IF \ b \ THEN \ c_1 \ ELSE \ c_2, s) \rightarrow (c_1, s)$ $\neg \ bval \ b \ s$ $(IF \ b \ THEN \ c_1 \ ELSE \ c_2, s) \rightarrow (c_2, s)$

 $(WHILE \ b \ DO \ c, \ s) \rightarrow$ (IF b THEN c;; WHILE b DO c ELSE SKIP, s)

$bval\ b\ s$

 $(IF \ b \ THEN \ c_1 \ ELSE \ c_2, s) \rightarrow (c_1, s)$ $\neg \ bval \ b \ s$ $(IF \ b \ THEN \ c_1 \ ELSE \ c_2, s) \rightarrow (c_1, s)$

 $(IF \ b \ THEN \ c_1 \ ELSE \ c_2, s) \rightarrow (c_2, s)$

 $(WHILE \ b \ DO \ c, \ s) \rightarrow$ $(IF \ b \ THEN \ c;; \ WHILE \ b \ DO \ c \ ELSE \ SKIP, \ s)$

Fact (SKIP, s) is a final configuration.

Small_Step.thy

Semantics

Are big and small-step semantics equivalent?

Theorem $cs \Rightarrow t \implies cs \rightarrow * (SKIP, t)$

Theorem $cs \Rightarrow t \implies cs \rightarrow * (SKIP, t)$

Proof by rule induction

Theorem $cs \Rightarrow t \implies cs \rightarrow *$ (*SKIP*, *t*) Proof by rule induction (of course on $cs \Rightarrow t$)

Theorem $cs \Rightarrow t \implies cs \rightarrow *$ (*SKIP*, *t*) Proof by rule induction (of course on $cs \Rightarrow t$) In two cases a lemma is needed:

Theorem $cs \Rightarrow t \implies cs \rightarrow * (SKIP, t)$

Proof by rule induction (of course on $cs \Rightarrow t$) In two cases a lemma is needed:

Lemma

 $(c_1, s) \rightarrow * (c_1', s') \Longrightarrow (c_1;; c_2, s) \rightarrow * (c_1';; c_2, s')$

Theorem $cs \Rightarrow t \implies cs \rightarrow * (SKIP, t)$

Proof by rule induction (of course on $cs \Rightarrow t$) In two cases a lemma is needed:

Lemma

 $(c_1, s) \rightarrow * (c_1', s') \Longrightarrow (c_1;; c_2, s) \rightarrow * (c_1';; c_2, s')$

Proof by rule induction.

Theorem $cs \rightarrow *$ (*SKIP*, t) $\implies cs \Rightarrow t$

Theorem $cs \rightarrow *$ (*SKIP*, t) $\implies cs \Rightarrow t$ Proof by rule induction on $cs \rightarrow *$ (*SKIP*, t).

Theorem $cs \rightarrow *$ (*SKIP*, t) $\implies cs \Rightarrow t$ Proof by rule induction on $cs \rightarrow *$ (*SKIP*, t). In the induction step a lemma is needed:

Theorem $cs \rightarrow *$ (*SKIP*, t) $\implies cs \Rightarrow t$ Proof by rule induction on $cs \rightarrow *$ (*SKIP*, t). In the induction step a lemma is needed:

Lemma $cs \rightarrow cs' \implies cs' \Rightarrow t \implies cs \Rightarrow t$

Theorem $cs \rightarrow *$ (*SKIP*, t) $\implies cs \Rightarrow t$ Proof by rule induction on $cs \rightarrow *$ (*SKIP*, t). In the induction step a lemma is needed:

Lemma $cs \rightarrow cs' \implies cs' \Rightarrow t \implies cs \Rightarrow t$ Proof by rule induction on $cs \rightarrow cs'$.

Equivalence

Corollary $cs \Rightarrow t \iff cs \rightarrow * (SKIP, t)$

Small_Step.thy

Equivalence of big and small

Can execution stop prematurely?

Lemma final $(c, s) \Longrightarrow c = SKIP$

$$Lemma final (c, s) \Longrightarrow c = SKIP$$

We prove the contrapositive

$$c \neq SKIP \Longrightarrow \neg final(c,s)$$

by induction on c.

Lemma final $(c, s) \Longrightarrow c = SKIP$

We prove the contrapositive

$$c \neq SKIP \Longrightarrow \neg final(c,s)$$

by induction on c.

$$Lemma final (c, s) \Longrightarrow c = SKIP$$

We prove the contrapositive

$$c \neq SKIP \Longrightarrow \neg final(c,s)$$

by induction on c.

•
$$c_1 = SKIP$$

$$Lemma final (c, s) \Longrightarrow c = SKIP$$

We prove the contrapositive

$$c \neq SKIP \Longrightarrow \neg final(c,s)$$

by induction on c.

•
$$c_1 = SKIP \Longrightarrow \neg final (c_1;; c_2, s)$$

$$Lemma final (c, s) \Longrightarrow c = SKIP$$

We prove the contrapositive

$$c \neq SKIP \Longrightarrow \neg final(c,s)$$

by induction on c.

•
$$c_1 = SKIP \Longrightarrow \neg final (c_1;; c_2, s)$$

• $c_1 \neq SKIP$

$$Lemma final (c, s) \Longrightarrow c = SKIP$$

We prove the contrapositive

$$c \neq SKIP \Longrightarrow \neg final(c,s)$$

by induction on c.

•
$$c_1 = SKIP \Longrightarrow \neg final(c_1;; c_2, s)$$

• $c_1 \neq SKIP \Longrightarrow \neg final(c_1, s)$

$$Lemma final (c, s) \Longrightarrow c = SKIP$$

We prove the contrapositive

$$c \neq SKIP \Longrightarrow \neg final(c,s)$$

by induction on c.

•
$$c_1 = SKIP \Longrightarrow \neg final(c_1;; c_2, s)$$

• $c_1 \neq SKIP \Longrightarrow \neg final(c_1;; c_2, s)$

•
$$c_1 \neq SKIP \Longrightarrow \neg final (c_1, s)$$
 (by IH)

$$Lemma \ final \ (c, \ s) \implies c = SKIP$$

We prove the contrapositive

$$c \neq SKIP \Longrightarrow \neg final(c,s)$$

by induction on c.

•
$$c_1 \neq SKIP \Longrightarrow \neg final (c_1, s)$$
 (by IH
 $\Longrightarrow \neg final (c_1;; c_2, s)$

$$Lemma \ final \ (c, \ s) \implies c = SKIP$$

We prove the contrapositive

$$c \neq SKIP \Longrightarrow \neg final(c,s)$$

by induction on c.

• Case
$$c_1$$
;; c_2 : by case distinction:

•
$$c_1 = SKIP \Longrightarrow \neg final (c_1;; c_2, s)$$

• $c_1 \neq SKIP \Longrightarrow \neg final (c_1, s)$ (by IH)
 $\Longrightarrow \neg final (c_1;; c_2, s)$

• Remaining cases: trivial or easy

By rule inversion: $(SKIP, s) \rightarrow ct \Longrightarrow False$

By rule inversion: $(SKIP, s) \rightarrow ct \Longrightarrow False$ Together:

Corollary final (c, s) = (c = SKIP)

 \Rightarrow yields final state % f(x) = f(x) + f(x

 \Rightarrow yields final state % f(x) = f(x) + f(x

Lemma $(\exists t. cs \Rightarrow t) = (\exists cs'. cs \rightarrow * cs' \land final cs')$

 \Rightarrow yields final state % f(x) = f(x) + f(x

Lemma $(\exists t. cs \Rightarrow t) = (\exists cs'. cs \rightarrow * cs' \land final cs')$ Proof: $(\exists t. cs \Rightarrow t)$

 \Rightarrow yields final state % f(x) = f(x) + f(x

Lemma $(\exists t. cs \Rightarrow t) = (\exists cs'. cs \rightarrow * cs' \land final cs')$ Proof: $(\exists t. cs \Rightarrow t)$ $= (\exists t. cs \rightarrow * (SKIP, t))$

 \Rightarrow yields final state % f(x) = f(x) + f(x

Lemma $(\exists t. cs \Rightarrow t) = (\exists cs'. cs \rightarrow * cs' \land final cs')$ Proof: $(\exists t. cs \Rightarrow t)$ $= (\exists t. cs \rightarrow * (SKIP, t))$ (by big = small)

 \Rightarrow yields final state iff \rightarrow terminates

Lemma $(\exists t. cs \Rightarrow t) = (\exists cs'. cs \rightarrow * cs' \land final cs')$ Proof: $(\exists t. cs \Rightarrow t)$ $= (\exists t. cs \rightarrow * (SKIP, t))$ (by big = small) $= (\exists cs'. cs \rightarrow * cs' \land final cs')$

 \Rightarrow yields final state iff \rightarrow terminates

Lemma $(\exists t. cs \Rightarrow t) = (\exists cs'. cs \rightarrow * cs' \land final cs')$ Proof: $(\exists t. cs \Rightarrow t)$ $= (\exists t. cs \rightarrow * (SKIP, t))$ (by big = small) $= (\exists cs'. cs \rightarrow * cs' \land final cs')$ (by final = SKIP)

 \Rightarrow yields final state % f(x) = f(x) + f(x

Lemma $(\exists t. cs \Rightarrow t) = (\exists cs'. cs \rightarrow * cs' \land final cs')$ Proof: $(\exists t. cs \Rightarrow t)$ $= (\exists t. cs \rightarrow * (SKIP, t))$ (by big = small) $= (\exists cs'. cs \rightarrow * cs' \land final cs')$ (by final = SKIP)

Equivalent:

 \Rightarrow does not yield final state iff \rightarrow does not terminate

 \rightarrow is deterministic:

 \rightarrow is deterministic:

Lemma $cs \rightarrow cs' \implies cs \rightarrow cs'' \implies cs'' = cs'$

 \rightarrow is deterministic:

Lemma $cs \rightarrow cs' \implies cs \rightarrow cs'' \implies cs'' = cs'$ (Proof by rule induction)

 \rightarrow is deterministic:

Lemma $cs \rightarrow cs' \implies cs \rightarrow cs'' \implies cs'' = cs'$ (Proof by rule induction)

Therefore: no difference between may terminate (there is a terminating \rightarrow path) must terminate (all \rightarrow paths terminate)

 \rightarrow is deterministic:

Lemma $cs \rightarrow cs' \implies cs \rightarrow cs'' \implies cs'' = cs'$ (Proof by rule induction)

Therefore: no difference between may terminate (there is a terminating \rightarrow path) must terminate (all \rightarrow paths terminate) Therefore: \Rightarrow correctly reflects termination behaviour.

 \rightarrow is deterministic:

Lemma $cs \rightarrow cs' \implies cs \rightarrow cs'' \implies cs'' = cs'$ (Proof by rule induction)

Therefore: no difference between may terminate (there is a terminating \rightarrow path) must terminate (all \rightarrow paths terminate) Therefore: \Rightarrow correctly reflects termination behaviour. With nondeterminism: may have both $cs \Rightarrow t$ and a nonterminating reduction $cs \rightarrow cs' \rightarrow \ldots$