
Coq Tactics overview

Semantics 2023/2024

Based on material from the Introduction to Computational Logic Course at Saarland University

We write down goals using inference rules of the form
premise

conclusion
In Coq, this means that the premise is part of your proof context (“what you know ”) while the conclusion is your goal (“what you have to prove”).

The common variants refer to the table further down below.

Tactic Applies to goals of the
form

Goals after application Proof term

destruct x
Performs a case analysis on mem-
bers x of inductive types X.
• Use eqn: H to preserve the equa-

tions for the cases.
• Common variants: as, in

∀ x: X, p x

where X is an inductive type.

depends on the inductive
definition λ (x: X) ⇒

match x with
| C1 x1 . . . xn ⇒ ■
| . . .

end

edestruct x
Similar to destruct, but can also
deal with existential variables: if
it does not know how to instanti-
ate variables, it does not fail, but
instead introduces existential vari-
ables which need to be instantiated
later.
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Tactic Applies to goals of the
form

Goals after application Proof term

reflexivity
Solves equalities that hold by con-
version. x = y

where x and y are convertible

Solved. (fails if unsolvable) Q

simpl
Computes, in the sense that it re-
duces matches and fixpoints when
applied to a constructor.
simpl [X] to only use delta conver-
sion on X. simpl −[X] to use delta
conversion on everything except X.
Common variants: in

p (S x + y)
p (S (x + y))

(unchanged)

rewrite H
Replaces every occurrence of the
term s with the term t if H: s = t
(if H contains a universal quantifier,
Coq might replace only one occur-
rence).
• rewrite !H rewrites as often as

possible, but at least one time.
• specify the rewrite direction with

rewrite → or rewrite ←
• Common variants: in, at

H: s = t
P

where s occurs in P

H: s = t
P ′

where s is substituted with t

eq_indr _ ■ H



Tactic Applies to goals of the
form

Goals after application Proof term

induction x as [...] using ... in ...
Applies the automatically generated
induction lemma for an inductive
type X to the current goal and in-
troduces assumptions.
• x can be number n. In that case

assumptions until the nth term
are introduced and an induction
on the last introduced assump-
tion is performed.

• The keyword using can be used
to perform induction with the
eliminator provided.

• An occurrence set with
in y |- * can be used to
generalize y in the inductive
hypothesis similar to revert.

• Common variants: as

∀ x: X, p x

where X is an inductive type.

depends on the inductive
definition

EX ■ . . . ■

cbv
call by value - reduces the goal with
specified reduction.
Reductions: beta, delta (can have
an identifier), match, fix, zeta
If used without an argument, it re-
duces to a normal form
Common variants: in

P
Q

with P ≈ Q

(unchanged)

exact E
Inserts the proof term E.

Solved. (fails if unsolvable) E

assumption
Solves the goal if the claim is an as-
sumption.

H : P
P

Solved. (fails if unsolvable) H



Tactic Applies to goals of the
form

Goals after application Proof term

intros x1 xn H1 Hn
Introduces the variables x1, xn, H1,
Hn from the claim as an assump-
tion. If used without arguments, the
names of the assumptions are cho-
sen. See the section Intro Patterns
below for introduction patterns.

∀ x1 x2, P → Q → R x1 : X
xn : Y
H1 : P
Hn : Q

R

(λ x1 xn H1 Hn ⇒ ■ ),
where ■ is the gap in
the proof term which
still needs to be closed

apply H
Applies the function H.
• apply H with (x:= a) applies H

where x is instantiated with a.
• Common variants: as, in

H: X → Y
Y H: X → Y

X

H ■

eapply H
Behaves like apply but does not
fail when it can’t instantiate vari-
ables. It can introduce existential
variables. These need to be instan-
tiated later.
Common variants: as, in

H: X → Y
Y H: X → Y

X

H ■

left.
Applies the L contructor of ∨.1

P∨Q P

L ■

right.
Applies the R contructor of ∨.1

P∨Q Q

R ■

1applies to types with two constructors



Tactic Applies to goals of the
form

Goals after application Proof term

split
Applies the C contructor of ∧.2

P∧Q P Q

C ■ ■

enough (H: Q)
Allows you to prove P under the as-
sumption H first and then H remains
to be shown.
Common variants: by, as

P H: Q
P

Q

(λ H ⇒ ■ ) ■

exfalso
Changes the goal to ⊥ as it is always
sufficient to prove falsity. P

⊥

⊥_ind P ■
alternative: match F []
where F is a proof of ⊥.

refine s
Applies the partial proof term s, in
the sense that for every underscore
in the proof term a goal will be gen-
erated.

P Q1 Qn

where Q1, . . . , Qn are the
types of the underscores in s

s
_
■

change Q
Changes the goal to Q if P and Q
are equal up to conversion (P ≈ Q).
• The variant change P with Q

can be used to replace a particu-
lar subterm P with Q.

• Common variants: in, at (only to-
gether with with)

P
Q

with P ≈ Q

(unchanged)

pattern x
Performs a β-expansion on the goal.
Common variants: at p x

(λ y ⇒p y) x

(unchanged)

2applies to single constructor types



Tactic Applies to goals of the
form

Goals after application Proof term

assert (H: Q)
Asserts that the proposition P holds
and makes it available as H in the
further proof.
Common variants: by, as

P Q H: Q
P

let H := ■ in ■
alternative:

(λ H ⇒ ■ ) ■

fold H
Undo the effect of delta reduction on
H. P

Q

with P ≈ Q

(unchanged)

set (H := t)
replaces t with H and adds a new
definition H := t. P H := t

Q

where t is replaced by H in Q.

let H := t in ■

subst x
Replaces x with an equivalent value
defined by an equation involving x
in the assumptions or a definition of
x. After that the assumption or def-
inition is removed.
subst without any arguments substi-
tutes everything it can.

x := t
p x

p t

(unchanged)

revert xn x1 Hn H1
Reverse operation of introduce. Re-
verts the variables x1, xn, H1, Hn
from the assumptions into the claim.
The variabled must not be used in
other assumptions.

x1 : X
xn : Y
H1 : P
Hn : Q

R

∀ xn x1, Q → P → R

(λ x1 xn H1 Hn ⇒
■ xn x1 Hn H1), where
■ is the gap in the

proof term which still
needs to be closed



Tactic Applies to goals of the
form

Goals after application Proof term

replace A with B
Replaces all occurrences of A with
B in the goal. A new subgoal of the
form A= B is generated and solved if
it occurs in the assumptions.
Common variants: in, by

P Q A=B

where A is replaced by B in Q

R ■ ■ ■

exists a
Puts in a witness into a proof with
an existential quantifier. ∃ x, p x p a

E ■ ■ ■

enough (H: Q)
Asserts that the proposition P holds
and makes it available as H in the
further proof like assert. The differ-
ence is that the old goal is the first
to prove.

P H: Q
P Q

let H := ■ in ■
alternative:

(λ H ⇒ ■ ) ■

unfold f
Unfolds the definition of f and β-
reduces (reducing a λ applied to
some argument) the result, if pos-
sible.

P
where P contains f somewhere P ′

where P ′ is P with the
definition of f substituted in

(unchanged)

specialize (H x)
Instantiates an assumption H by
passing it an argument x.
Common variants: as

H: ∀ y, P
Q H: Px

y

Q

(λ (H: P x
y ⇒ ■

) (H x)



Tactic Applies to goals of the
form

Goals after application Proof term

clear H
Removes a hypothesis. H: X → Y

Y
X

■

contradict H
Changes the goal to ⊥ and apply
the assumption H if it is a negation.
When the goal is a negation itself it
first introduce it. When H is not an
implication to ⊥ it changes the goal
to the negation of H.

H: X
Y

X

⊥ind Y H ■

f_equal
Functions are functional, thus if we
want to show f x = f y it’s always
sufficient to show x = y. This is also
true for constructors by injectivity.

f x1 xn = f y1 yn
x1 = y1 xn = yn

f_equal ■ . . . ■

symmetry
Applies symmetry to equalities.
Common variants: in x= y

y= x

eq_sym _

constructor [n]
Applies the nth constructor to the
goal. If no number is specified the
constructors are tried in order. It is
a more general form of the tactics
split , ∃ , left and right .

P
Q

C _ where C is the
constructor

generalize H
Add universal quantification of H to
the Goal. This might manifest in an
implication if H is not used in the
previous goal.

P
∀ H. P



Tactic Applies to goals of the
form

Goals after application Proof term

decide equality
Construct an equality decider for
inductive types. The constructors
can’t have proofs, functions nor ob-
jects in dependent types.

∀ x y : R, {x = y} + {x ̸= y}
H
Q

try t
Use tactic t if possible. Does noth-
ing otherwise. P

Q



Automation

Tactic Applies to goals of the
form

Goals after application

tauto
Solves all goals that can be solved by purely propositional
reasoning. It can solve all tautological intuitionistic propo-
sitions. tauto will not instantiate universal quantifiers.

P

Solved. (fails if unsolvable)

auto
auto tries the assumptions, then introduce and
tries tactics depending on the form of the goal
A number can be used to define the search depth.
Its proof search can be customised by adding hints.

P

Solved. (does nothing if
unsolvable)

eauto
A more general tactic than auto. It can resolve existential
quantifiers. Leave Variable which can’t be instantiated as
existential variables.

P

Solved. (does nothing if
unsolvable)

congruence
Solves all goals that can be solved using purely equational
reasoning, i.e reflexivity, transitvity, symmetry and rewrit-
ing.
It uses the Nelson and Oppen closure algorithm. It subsumes
the power of injectivity and discriminate.

P

Solved. (fails if unsolvable)

discriminate
Can prove anything when a disjoint assumption is present.
It automates a disjointness proof of constructors. P

Solved. (fails if unsolvable)



lia
Uses linear positivstellensatz refutations, cutting plane
proofs (rounding rational constants) and case analysis for
possible values.
Has the power of omega (Presburger Arithmetic) and nor-
malization of ring and semiring structures.
Put simply, it solves arithmetic computational problems.
Lia has to be loaded before (Require Import Lia.).

P

Solved. (fails if unsolvable)

nia
A variant of lia that can not only deal with linear arithmetic,
but also with non-linear arithmetic (i.e. multiplication).
Essentially heuristically transforms the goal to eliminate
non-linearities and then calls lia.
This is not a complete decision procedure and may fail on
many goals or take prohibitely long. Lia has to be loaded
before (Require Import Lia.).

P

Solved. (fails if unsolvable)

intuition
Split along the search tree of the decision procedures from
tauto and apply auto. P

Solved. (simplify if
unsolvable)

assumption
Can use hypothesis which type is convertible to the goal to
proof it. P

Solved. (fail if unsolvable)

eassumption
Behave like assumption but can handle goals with existential
variables. P

Solved. (fail if unsolvable)

firstorder
Uses logical connectives and first-order class inductive defi-
nitions to solve problems of predicate logic. P

Solved. (does not fail)

trivial
This is a restricted version of auto that is not recursive.
Essentially combines reflexivity and assumption.

Solved. (does not fail)



injection H
Injectivity proofs of constructors H: C x1 xn = C y1 yn

P x1 = y1 → xn = yn → P

discriminate H
Disjointness proofs of constructors H: C1 x1 xn = C2 y1 ym

P

Solved. (fails if unsolvable)



Essential stdpp tactics

Tactic Applies to goals of the
form

Goals after application

done
Solves trivial goals by reflexivity, discrimination, splitting,
and with trivial. Faster than Coq’s built-in easy. P

Solved. (fails if unsolvable)

simplify_eq
Repeatedly substitutes, discriminates, and injects equalities,
and tries to contradict impossible inequalities. The variant
simplify_eq/= additionally performs simplification.

P

Simplified goal.

by tac
Calls tac and executes done afterwards. Faster than Coq’s
built-in now. P

Solved (fails if unsolvable).

split_and
Destructs a conjunction in the goal (and only conjunctions,
in contrast to Coq’s built-in split, which also splits other in-
ductives). The variant split_andsplits multiple conjunctions,
but at least one. The variant split_and? splits zero or more
conjunctions.

P∧Q P Q

naive_solver
A firstorder-like tactic. firstorder can “loop” on quite small
goals already, naive_solver fixes that by implementing a
breadth-first search with limited depth. It implements some
ad-hoc rules for logical connectives that in practice work
quite well, and usually works better than firstorder for our
purposes.

P

Solved (fails if unsolvable).



Common variants of tactics

This is a small list of common variants of tactics (e.g. apply has a variant apply _ in _) together with the behaviour one can in general expect from
them. However, there may be minor differences in the effect of these variants depending on the tactic, although Coq mostly tries to make them behave as
expected.

However, exceptions confirm the rule. Sometimes the same keywords can mean very different things (take for instance the variant induction ... in ...
mentioned above).

The tactic list above contains for each tactic a list of the most relevant variants. For a more comprehensive list of variants and a description of their
individual behaviours, see the Coq tactic index.

Variant Usual Meaning Example
as
<intropattern>

Use an intropattern to specify the names given to new as-
sumptions introduced or to directly destruct it.

destruct H as [H1 H2]
apply H in H’ as [H1 H2]

by <tactical> Directly dispatch a new goal that is generated by a given
tactical, which should completely solve the goal.

assert (x = y) by (intros H; now apply H2)
rewrite H by eauto

in <assumption> If a tactic should not be applied to the goal, specify to which
assumption it should be applied.

rewrite H in H1
apply H1 in H2

at <occurrence
list>

For rewriting-based tactics: give the occurrence (s) at which
the rewrite shall be performed.

rewrite H at 1 3
change y at 2 with ((fun x => x) y)



How to use tactics

Proposition Usage Proving
A → B If you want to prove B you can apply it to change

your goal into A.
You introduce ( intros ) A as a new assumption and

are left with B to prove.
¬ A When you have an instance of A you can construct

⊥.
Introduce A and proof ⊥.

∀x, px You can apply your assumption with a specified
parameter y to prove p y.

Introduce ( intros ) an arbitrary x and prove p x.

A ∧ B By case analysis (destruct) you have an assumption of
type A and another one of type B.

You can split the goal into two subgoals, where the
first is A and the second is B.

A ∨ B By case analysis (destruct) you have either A or B.
There will be two subgoals. In the first one, you have
A as an additional assumption and in the second one

you have B as an additional assumption.

Decide to either prove the left side A ( left ) or the
right side B ( right ).



Auxiliary commands

Command Usage
Print displays information about objects like the definition of a function or the proof of a theorem.

Print All shows the current state of the environment.
Locate shows information about a given notation
Compute evaluate a given term with call-by-value
Check displays the type of a given term
Arguments syntax: Arguments qualifier [n] {m} where n and m are arguments

arguments in square brackets become implicit and
arguments in curly brackets are declared as maximally inserted.

Show Proof displays the proof term which has been constructed by tactics
Section [Name] open a new section with local declarations. Outside the section all used declared constants have to be

provided when accessing the object from the section.
Variable Assume a constant of a given type inside a section.
Module Type [Name] create a type for modules with objects given by Parameter X:T.
Module [Name] : [Type] creates a module given a module type. All Parameters have to be defined. Objects which are not

specified by a parameter are not visible to the outside.
Require Import [Name] Loads and declares the module. After this the content of the module is imported.
if x then a else b Performs a match on (x:X) where X has two constructors. The statement in the first case is a and

the statement for the second constructor is b. All parameters of the constructors are ignored.
let (y1, . . ., yn) := x in a Performs a match on (x:X) where X has one constructor. y1 to yn are bound to the last n parameters

of the constructor, where yn is the last parameter. a is the statement in the match.
Proof. ... Admitted. End an unsolved proof.
Proof. ... Abort. End an unsolved proof and remove it from the context.
Proof. ... Qed. Extracts a proof term as justification for the goal and declares the goal as opaque constant. An

opaque constant can’t be unfolded and so can’t be used in computational evaluation.
Proof. ... Defined. Declares the proof as transparent. It can be unfolded by conversion and so the proof term can be

used explicitly.
Search (P). Print the lemma which matches a provided pattern P. Example for commutativity: (_ + _ = _ + _)



Command Usage
Fail t. Execute t and expects it to fail. If it doesn’t the command fail.
all: t. Execute t in all parallel goals.
n: t. Execute t in the nth subgoal.
@H Explicitly takes implicit arguments.
Print Assumptions f. Show all assumptions (axioms, hypothesis, variables, . . .) made to define f.



Intro Patterns

These patterns can be used together with tactics that introduce new assumptions, like intros .

Pattern Description Before After
Name Introduce a term (hypothesis or variable) as Name

H → P
Name: H

P

[x|n H1 H2] Introduce a term and destruct it. If the type has mul-
tiple constructors they are separated by |. The argu-
ments in one constructor are separated by spaces. (∃ k, H) → P k : N

H1 : H

P

* Introduce one or more quantified variables until there
are no more quantified variables.

∀ H1 H2, H3 → P
n1 : H1, n2 : H2

H3 → P

H1%H Introduce a term and apply H in it.

H : X → Y

X → P

H : X → Y
H1 : Y

P

→ Rewrite the equation. Can also be used as ←.

(X= Y) → Y X



Pattern Description Before After
(H1&H2&H3) Introduce a nested term with multiple arguments and

split it.

X ∧ Y ∧ Z → P

H1 : X
H2 : Y
H3 : Z

P

[= H] Introduce a term and apply injectivity and discrimi-
nate on it.

S x = S y → P

H : x= y

P


