Coq Tactics overview

Semantics 2023/2024

Based on material from the Introduction to Computational Logic Course at Saarland University

We write down goals using inference rules of the form

premise

conclusion

In Coq, this means that the premise is part of your proof context ("what you know ") while the conclusion is your goal ("what you have to prove"). The common variants refer to the table further down below.

TACTIC	Applies to goals of the	GOALS AFTER APPLICATION	Proof term
	FORM		
destruct ×		depends on the inductive	
Performs a case analysis on mem-		definition	$\lambda (x: X) \Rightarrow$
bers x of inductive types X .	∀ x: X, p x		match x with
• Use <i>eqn: H</i> to preserve the equa-	where X is an inductive type.		$ $ C1 x1 xn \Rightarrow \blacksquare
tions for the cases.			
• Common variants: as, in			end
edestruct ×			
Similar to destruct , but can also			
deal with existential variables: if			
it does not know how to instanti-			
ate variables, it does not fail, but			
instead introduces existential vari-			
ables which need to be instantiated			
later.			

TACTIC	Applies to goals of the form	GOALS AFTER APPLICATION	Proof term
reflexivity Solves equalities that hold by conversion.	$\overline{\mathbf{x} = \mathbf{y}}$ where x and y are convertible	Solved. (fails if unsolvable)	Q
 simpl Computes, in the sense that it reduces matches and fixpoints when applied to a constructor. simpl [X] to only use delta conversion on X. simpl -[X] to use delta conversion on everything except X. Common variants: in 	$\overline{p(S + y)}$	p (S (x + y))	(unchanged)
 rewrite H Replaces every occurrence of the term s with the term t if H: s = t (if H contains a universal quantifier, Coq might replace only one occurrence). rewrite !H rewrites as often as possible, but at least one time. specify the rewrite direction with rewrite → or rewrite ← Common variants: in, at 	$\frac{H: s = t}{P}$ where <i>s</i> occurs in P	$\frac{H: s = t}{P'}$ where <i>s</i> is substituted with <i>t</i>	eq_indr _ ■ H

Tactic	Applies to goals of the form	GOALS AFTER APPLICATION	Proof term
 induction x as [] using in Applies the automatically generated induction lemma for an inductive type X to the current goal and in- troduces assumptions. x can be number n. In that case assumptions until the nth term are introduced and an induction on the last introduced assump- tion is performed. The keyword using can be used to perform induction with the eliminator provided. An occurrence set with in y - * can be used to generalize y in the inductive hypothesis similar to revert. Common variants: as 	$\overline{\forall x: X, p x}$ where X is an inductive type.	depends on the inductive definition	$E_X \blacksquare \ldots \blacksquare$
cbv call by value - reduces the goal with specified reduction. Reductions: beta, delta (can have an identifier), match, fix, zeta If used without an argument, it re- duces to a normal form Common variants: in	P	\overline{Q} with $P \approx Q$	(unchanged)
exact E Inserts the proof term E.		Solved. (fails if unsolvable)	E
assumption Solves the goal if the claim is an as- sumption.	H : P P	Solved. (fails if unsolvable)	Н

TACTIC	Applies to goals of the form	GOALS AFTER APPLICATION	Proof term
intros x1 xn H1 Hn Introduces the variables x1, xn, H1, Hn from the claim as an assump- tion. If used without arguments, the names of the assumptions are cho- sen. See the section Intro Patterns below for introduction patterns.	$\overline{\forall x1 x2}, P \rightarrow Q \rightarrow R$	x1 : X $xn : Y$ $H1 : P$ $Hn : Q$ R	$(\lambda \times 1 \times n \text{ H1 Hn} \Rightarrow \blacksquare),$ where \blacksquare is the gap in the proof term which still needs to be closed
 apply H Applies the function H. apply H with (x:= a) applies H where x is instantiated with a. Common variants: as, in 	$\frac{H: X \to Y}{Y}$	$\frac{H: X \to Y}{X}$	H
eapply H Behaves like apply but does not fail when it can't instantiate vari- ables. It can introduce existential variables. These need to be instan- tiated later. Common variants: as, in	$\frac{H: X \to Y}{Y}$	$\frac{H: X \to Y}{X}$	H
left . Applies the <i>L</i> contructor of \vee . ¹	P∨Q	P	
right . Applies the R contructor of \lor . ¹	PVQ	\overline{Q}	$R \blacksquare$

¹applies to types with two constructors

TACTIC	Applies to goals of the form	Goals after application	Proof term
split Applies the <i>C</i> contructor of \wedge . ²	PAQ	P Q	
enough (H: Q) Allows you to prove P under the as- sumption H first and then H remains to be shown. Common variants: by, as	P	H: Q Q P	$(\lambda \ H \Rightarrow \blacksquare) \blacksquare$
exfalso Changes the goal to \perp as it is always sufficient to prove falsity.	P		
refine s Applies the partial proof term <i>s</i> , in the sense that for every underscore in the proof term a goal will be gen- erated.	P	$\overline{Q_1}$ $\overline{Q_n}$ where Q_1, \dots, Q_n are the types of the underscores in s	S
 change Q Changes the goal to Q if P and Q are equal up to conversion (P ≈ Q). The variant change P with Q can be used to replace a particular subterm P with Q. Common variants: in, at (only together with with) 	P	\overline{Q} with $P \approx Q$	(unchanged)
pattern x Performs a β -expansion on the goal. Common variants: at	p x	$\overline{(\lambda \ y \Rightarrow p \ y) \ x}$	(unchanged)

²applies to single constructor types

TACTIC	Applies to goals of the form	GOALS AFTER APPLICATION	Proof term
assert (H: Q) Asserts that the proposition P holds and makes it available as H in the further proof. Common variants: by, as	P	Q <u>H: Q</u> P	$\begin{array}{ccc} let & H := & & in & \\ & \text{alternative:} \\ (\lambda & H \Rightarrow &) & \\ \end{array}$
fold H Undo the effect of delta reduction on H.	P	\overline{Q} with $P \approx Q$	(unchanged)
set $(H := t)$ replaces t with H and adds a new definition $H := t$.	P	$\frac{H := t}{Q}$ where t is replaced by H in Q.	let $H := t$ in
subst x Replaces x with an equivalent value defined by an equation involving x in the assumptions or a definition of x. After that the assumption or def- inition is removed.			
subst without any arguments substitutes everything it can.	$\frac{x := t}{p x}$	p t	(unchanged)
revert xn x1 Hn H1 Reverse operation of introduce. Reverts the variables x1, xn, H1, Hn from the assumptions into the claim. The variabled must not be used in other assumptions.	x1 : X xn : Y H1 : P Hn : Q R	$\forall xn x1, Q \rightarrow P \rightarrow R$	 (λ x1 xn H1 Hn ⇒ xn x1 Hn H1), where is the gap in the proof term which still needs to be closed

TACTIC	Applies to goals of the form	GOALS AFTER APPLICATION	Proof term
replace A with B			
Replaces all occurrences of A with			
B in the goal. A new subgoal of the			
form $A = B$ is generated and solved if			
it occurs in the assumptions.		I	
Common variants: in, by			$R \blacksquare \blacksquare$
	P	\overline{Q} $\overline{\mathrm{A=B}}$	
		where A is replaced by B in Q	
exists a			$E \blacksquare \blacksquare$
Puts in a witness into a proof with	$\exists x, p x$	p a	
an existential quantifier.	」 → ,	h a	
enough (H: Q)			let $H := \blacksquare$ in \blacksquare
Asserts that the proposition P holds	P	H: Q	alternative:
and makes it available as H in the	F	$\frac{1}{P}$ \overline{Q}	$(\lambda \ H \Rightarrow \blacksquare \) \blacksquare$
further proof like assert. The differ-			
ence is that the old goal is the first			
to prove.			
unfold f			(unchanged)
Unfolds the definition of f and β -	P	_	
reduces (reducing a λ applied to	where P contains f somewhere	P'	
some argument) the result, if pos-		where P' is P with the	
sible.		definition of f substituted in	
specialize (H x)			$(\lambda (H: P_y^x \Rightarrow \blacksquare))$
Instantiates an assumption H by	<u>H: ∀y, P</u>		(H x)
passing it an argument x .	Q	$\frac{H:\;P_y^x}{2}$	
Common variants: as		Q	

Tactic	Applies to goals of the form	GOALS AFTER APPLICATION	Proof term
clear H Removes a hypothesis.	$\frac{H: X \to Y}{Y}$	x	
contradict H Changes the goal to \perp and apply the assumption H if it is a negation. When the goal is a negation itself it first introduce it. When H is not an implication to \perp it changes the goal to the negation of H.	H: X Y	x	$\perp_{ind} Y H \blacksquare$
f_equal Functions are functional, thus if we want to show $f x = f y$ it's always sufficient to show $x = y$. This is also true for constructors by injectivity.	$f \times 1 \times n = f \times 1 \times n$	$\overline{x1 = y1}$ $\overline{xn = yn}$	$f_equal \blacksquare \dots \blacksquare$
symmetry Applies symmetry to equalities. Common variants: in	$\overline{x=y}$	$\overline{y=x}$	eq_sym _
constructor $[n]$ Applies the nth constructor to the goal. If no number is specified the constructors are tried in order. It is a more general form of the tactics split, \exists , left and right.	P	Q	C _ where C is the constructor
generalize H Add universal quantification of H to the Goal. This might manifest in an implication if H is not used in the previous goal.	P	∀ H. P	

Tactic	Applies to goals of the form	GOALS AFTER APPLICATION	Proof term
decide equality Construct an equality decider for inductive types. The constructors can't have proofs, functions nor ob- jects in dependent types.	$\overline{\forall x y : R, \{x = y\} + \{x \neq y\}}$	$\frac{H}{Q}$	
try t Use tactic t if possible. Does noth- ing otherwise.	P	\overline{Q}	

Automation

TACTIC	Applies to goals of the form	GOALS AFTER APPLICATION
tauto		Solved. (fails if unsolvable)
Solves all goals that can be solved by purely propositional	P	
reasoning. It can solve all tautological intuitionistic propo-	P	
sitions. tauto will not instantiate universal quantifiers.		
auto		Solved. (does nothing if
auto tries the assumptions, then introduce and	P	unsolvable)
tries tactics depending on the form of the goal	P	
A number can be used to define the search depth.		
Its proof search can be customised by adding hints.		
eauto		Solved. (does nothing if
A more general tactic than auto. It can resolve existential	P	unsolvable)
quantifiers. Leave Variable which can't be instantiated as	Г	
existential variables.		
congruence		Solved. (fails if unsolvable)
Solves all goals that can be solved using purely equational	P	
reasoning, i.e reflexivity, transitvity, symmetry and rewrit-	Г	
ing.		
It uses the Nelson and Oppen closure algorithm. It subsumes		
the power of injectivity and discriminate.		
discriminate		Solved. (fails if unsolvable)
Can prove anything when a disjoint assumption is present.	P	
It automates a disjointness proof of constructors.	Г Г	

lia		Solved. (fails if unsolvable)
Uses linear positivstellensatz refutations, cutting plane proofs (rounding rational constants) and case analysis for	P	
possible values.Has the power of omega (Presburger Arithmetic) and nor-		
malization of ring and semiring structures.		
Put simply, it solves arithmetic computational problems.		
Lia has to be loaded before (Require Import Lia.).		
nia		Solved. (fails if unsolvable
A variant of lia that can not only deal with linear arithmetic,	P	
but also with non-linear arithmetic (i.e. multiplication).		
Essentially heuristically transforms the goal to eliminate non-linearities and then calls lia.		
This is not a complete decision procedure and may fail on		
many goals or take prohibitely long. Lia has to be loaded		
before (Require Import Lia.).		
intuition		Solved. (simplify if
Split along the search tree of the decision procedures from	P	unsolvable)
tauto and apply auto.	F	
assumption		Solved. (fail if unsolvable)
Can use hypothesis which type is convertible to the goal to	P	× · · · · · · · · · · · · · · · · · · ·
proof it.	P	
eassumption		Solved. (fail if unsolvable)
Behave like assumption but can handle goals with existential	P	
variables.	۲	
firstorder		Solved. (does not fail)
Uses logical connectives and first-order class inductive defi-	P	
nitions to solve problems of predicate logic.	۲	
trivial		Solved. (does not fail)
This is a restricted version of auto that is not recursive.		
Essentially combines reflexivity and assumption.		

injection H Injectivity proofs of constructors	$\frac{\text{H: C x1 xn} = \text{C y1 yn}}{\text{P}}$	$\boxed{x1=y1\rightarrow xn=yn\rightarrow P}$
discriminate H Disjointness proofs of constructors	$\frac{\text{H: C1 x1 xn} = \text{C2 y1 ym}}{\text{P}}$	Solved. (fails if unsolvable)

Essential stdpp tactics

TACTIC	Applies to goals of the form	GOALS AFTER APPLICATION
done Solves trivial goals by reflexivity, discrimination, splitting, and with trivial. Faster than Coq's built-in easy.	P	Solved. (fails if unsolvable)
<pre>simplify_eq Repeatedly substitutes, discriminates, and injects equalities, and tries to contradict impossible inequalities. The variant simplify_eq/= additionally performs simplification.</pre>	P	Simplified goal.
by tac Calls tac and executes done afterwards. Faster than Coq's built-in now.	P	Solved (fails if unsolvable).
<pre>split_and Destructs a conjunction in the goal (and only conjunctions, in contrast to Coq's built-in split, which also splits other in- ductives). The variant split_and splits multiple conjunctions, but at least one. The variant split_and? splits zero or more conjunctions.</pre>	P∧Q	P Q
naive_solver A firstorder-like tactic. firstorder can "loop" on quite small goals already, naive_solver fixes that by implementing a breadth-first search with limited depth. It implements some ad-hoc rules for logical connectives that in practice work quite well, and usually works better than firstorder for our purposes.	P	Solved (fails if unsolvable).

Common variants of tactics

This is a small list of common variants of tactics (e.g. apply has a variant apply _ in _) together with the behaviour one can in general expect from them. However, there may be minor differences in the effect of these variants depending on the tactic, although Coq mostly tries to make them behave as expected.

However, exceptions confirm the rule. Sometimes the same keywords can mean very different things (take for instance the variant induction ... in ... mentioned above).

The tactic list above contains for each tactic a list of the most relevant variants. For a more comprehensive list of variants and a description of their individual behaviours, see the Coq tactic index.

VARIANT	USUAL MEANING	Example
as	Use an intropattern to specify the names given to new as-	destruct H as [H1 H2]
<pre><intropattern></intropattern></pre>	sumptions introduced or to directly destruct it.	apply H in H' as [H1 H2]
by <tactical></tactical>	Directly dispatch a new goal that is generated by a given	assert $(x = y)$ by (intros H; now apply H2)
	tactical, which should completely solve the goal.	rewrite H by eauto
in <assumption></assumption>	If a tactic should not be applied to the goal, specify to which	rewrite H in H1
	assumption it should be applied.	apply H1 in H2
at <occurrence< td=""><td>For rewriting-based tactics: give the occurrence (s) at which</td><td>rewrite H at 1 3</td></occurrence<>	For rewriting-based tactics: give the occurrence (s) at which	rewrite H at 1 3
list>	the rewrite shall be performed.	${\rm change \ y \ at \ 2 \ with \ ((fun \ x => x) \ y)}$

How to use tactics

PROPOSITION	USAGE	Proving
$A \rightarrow B$	If you want to prove B you can apply it to change	You introduce (intros) A as a new assumption and
	your goal into A.	are left with B to prove.
¬ A	When you have an instance of A you can construct	Introduce A and proof \perp .
	\perp .	
$\forall x, px$	You can apply your assumption with a specified	Introduce (intros) an arbitrary x and prove p x.
	parameter y to prove p y.	
$A \wedge B$	By case analysis (destruct) you have an assumption of	You can split the goal into two subgoals, where the
	type A and another one of type B.	first is A and the second is B.
$A \lor B$	By case analysis (destruct) you have either A or B.	Decide to either prove the left side A (left) or the
	There will be two subgoals. In the first one, you have	right side B (right).
	A as an additional assumption and in the second one	
	you have B as an additional assumption.	

Auxiliary commands

Command	USAGE	
Print	displays information about objects like the definition of a function or the proof of a theorem.	
	Print All shows the current state of the environment.	
Locate	shows information about a given notation	
Compute	evaluate a given term with call-by-value	
Check	displays the type of a given term	
Arguments	syntax: Arguments qualifier [n] {m} where n and m are arguments	
	arguments in square brackets become implicit and	
	arguments in curly brackets are declared as maximally inserted.	
Show Proof	displays the proof term which has been constructed by tactics	
Section [Name]	open a new section with local declarations. Outside the section all used declared constants have to be	
	provided when accessing the object from the section.	
Variable	Assume a constant of a given type inside a section.	
Module Type [Name]	create a type for modules with objects given by Parameter X:T.	
Module [Name] : [Type]	creates a module given a module type. All Parameters have to be defined. Objects which are not	
	specified by a parameter are not visible to the outside.	
Require Import [Name]	Loads and declares the module. After this the content of the module is imported.	
if x then a else b	Performs a match on (x:X) where X has two constructors. The statement in the first case is a and	
	the statement for the second constructor is b. All parameters of the constructors are ignored.	
$let (y_1, \ldots, y_n) := x in a$	Performs a match on (x:X) where X has one constructor. y_1 to y_n are bound to the last n parameters	
	of the constructor, where y_n is the last parameter. a is the statement in the match.	
Proof Admitted.	End an unsolved proof.	
Proof Abort.	End an unsolved proof and remove it from the context.	
Proof Qed.	Extracts a proof term as justification for the goal and declares the goal as opaque constant. An	
	opaque constant can't be unfolded and so can't be used in computational evaluation.	
Proof Defined.	Declares the proof as transparent. It can be unfolded by conversion and so the proof term can be	
	used explicitly.	
Search (P).	Print the lemma which matches a provided pattern P. Example for commutativity: $(_ + _ = _ + _)$	

Command	USAGE	
Fail t.	Execute t and expects it to fail. If it doesn't the command fail.	
all: t.	Execute t in all parallel goals.	
n: t.	Execute t in the nth subgoal.	
@H	Explicitly takes implicit arguments.	
Print Assumptions f.	Show all assumptions (axioms, hypothesis, variables,) made to define f.	

Intro Patterns

These patterns can be used together with tactics that introduce new assumptions, like intros.

Pattern	DESCRIPTION	Before	AFTER
Name	Introduce a term (hypothesis or variable) as Name	$\overline{H} \to P$	Name: H P
[x n H1 H2]	Introduce a term and destruct it. If the type has mul- tiple constructors they are separated by . The argu- ments in one constructor are separated by spaces.	$\overline{(\exists k, H) \rightarrow P}$	k : ℕ H1 : H P
*	Introduce one or more quantified variables until there are no more quantified variables.	$\overline{\forall}$ H1 H2, H3 \rightarrow P	$\frac{n1 : H1, n2 : H2}{H3 \rightarrow P}$
H1%H	Introduce a term and apply H in it.	$\frac{H: X \to Y}{X \to P}$	$H: X \rightarrow Y$ $H1: Y$ P
\rightarrow	Rewrite the equation. Can also be used as \leftarrow .	$\overline{(X=Y) \to Y}$	X

Pattern	DESCRIPTION	Before	After
(H1&H2&H3)	Introduce a nested term with multiple arguments and		
	split it.	$\overline{X \land Y \land Z \to P}$	H1 : X H2 : Y H3 : Z P
[= H]	Introduce a term and apply injectivity and discrimi- nate on it.	$\overline{S \times = S \ y \rightarrow P}$	$\frac{H: x=y}{P}$