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Recall the tasks we have introduced so far:

• PoS-tagging: {input: sentence} → {output: PoS tags}
• Syntactic Parsing: {input: sentence} → {output: tree structures}
• Grammar Induction: {input: sentence} → {output: tree structures}
• Text Classification: {input: sentence} → {output: label}

Natural Language Understanding (NLU):
Process unstructured text into structured information

Structured information is more amenable to machine understand-
ing, but not to humans. We need machines to generate human-like
languages!
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I have a question about whether you’ve been
attempted to look at generation? [...] That is a
rich rich area which so few people address [...]

Well, I find generation completely terrifying
[...] I am very interested in the problem [...]
That’s an important question.

ACL lifetime archievement award lecture (vimeo.com/288152682)

Mark Steedman
FBA, FRSE

equally (maybe even more) important to NLU

Lecture 11: Natural Language Generation

1. What is NLG?

2. Text-to-Text Generation Modeling

vimeo.com/288152682


What is NLG?



Task Overview

Broadly, NLG is the task that asks machines to generate human-like text.
Mathematically, NLG is a mapping problem:

NLG : X → Y, (1)

where X is the input, and Y is the output.

• Output: text (which humans can interact with)

• Input: structured representation (semantic representations, syntactic
trees, etc)

NLG is more than the inverse of NLU!
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Generation from What?!

• Structured/Semi-Structured Representation:
• Realization: syntactic/semantic representations (AMR, SRL, logical

form, etc)
• Data-to-text generation: tables, databases, knowledge bases, etc
• ...

• Text:
• Machine Translation: from one language to another
• Text Summarisation: from long/multiple texts to short text
• Chatbot/QA: from user input (text/questions) to meaningful responses

in dialogue form
• ...

• Other Modalities:
• Image Caption Generation/QA: from visual to text
• Video Summarisation: from visual and audio to text
• ...
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NLG vs NLU

NLU Task NLG Task

Goal Extract and understand syn-
tactic/semantic/discourse/prag-
matic information from texts

Generate human-like natural lan-
guage expression based on task
requirements

Input natural language expression (semi-) structured data, natural
language expression, image, etc

Output structured data natural language expression

Typical
Tasks

CCG parsing, discourse analysis,
sentiment analysis

text summarisation, MT, dia-
logue response generation

Main
Chal-
lenge

Context-dependent, ambiguity,
et (that impact the understand-
ing)

fluency, coherence, consistency,
faithfulness, and in particular fac-
tuality (in the era of LLM)

The NLG/NLU tasks are stated from the input/output perspective.
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Text-to-Text Generation Modeling:

Text Summarisation as Example



Task Introduction

Take single-document (e.g., newspaper, dialogue) summarisation for
example:

• Task: Given an input document X = x1, x2, ..., x|X|, the goal is to
generate a concise version or summary Y = y1, y2, ..., y|Y |,

1 where the
summary should be much shorter than the document, i.e. |X| >> |Y |.

• Goal: reduce the length of the input: remove redundant information;
keep most salient information.

• Application: News abstract generation, SemanticScholar (TL;DR),
even the potential title/topic recommendation (like in TikTok), etc.

• Variant: multi-doc summarisation, query-based summarisation, video
summarisation, etc.

1Each xi represents the i-th token in the document and yj represents the j-th token
in the summary. |X| and |Y | refer to the lengths of the document and summary,
respectively, in terms of tokens.
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Modeling

1. Statistic and heuristic method
• Word frequency (Luhn, 1958)

2. Machine-learning methods
• Bayes classifier (Kupiec et al., 1995)

3. Deep-learning based method
• Sequence-to-Sequence (Rush et al., 2015)
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But before that, let’s get a more direct sense of the task

Given a news article, what is the laziest and easiest way to get its main
information (summary)?
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Statistic and heuristic method

The main idea of lead-n method:

the key information is concentrated in its leading text

Method:
• Use the leading n sentences as summary

Comments:
• Very simple (the simplest) but surprisingly effective on texts that have

an inverted pyramid structure (e.g., news).

• Easily extended to other variants: longest-n, last-n, etc.

Hint here: always look into your data and be
familiar with what task you are doing!
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Statistic and heuristic method

The main idea of lead-n method:

the key information is concentrated in its leading text

Method:
• Use the leading n sentences as summary

Comments:
• Very simple (the simplest) but surprisingly effective on texts that have
an inverted pyramid structure (e.g., news).

• Easily extended to other variants: longest-n, last-n, etc.

• But it is biased towards positions. Perform poorly on other texts (e.g.,
academic papers).
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Statistic and heuristic method

In addition to positions, what features
can tell the importance of a sentence?
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Statistic and heuristic method

The main idea in (Luhn, 1958):

“... frequency of word occurrence in an article furnishes a useful
measurement of word significance” (Luhn, 1958)

Method:

1. Given an article, calculate the frequencies of words in it.

2. Filter out very high-frequent and low-frequent words.

3. Calculate significance factor of a sentence based on the word frequency.

4. Use sentences with the highest significance factor scores as summaries.

Comments:

1. Introduce word frequency as statistical feature into summarisation.

2. Introduce the concept of selecting sentences by scores.

3. However, the feature is shallow and local (no semantic info, sentence
relation, etc).
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Both lead-n and Luhn (1958) select important sentences from the
document using shallow features in a heuristic way, and both are free of
training (why?)

• At that time, there was no annotated data for training. The
development of NLP/AI/ML is highly related to the development of
data.

• No (good) ML methods.

With the availability of data, and development traditional
machine-learning:

• Can you come up with an idea to model summarisation with the
knowledge that you have learnt in this course so far?

Use the NLU method to model text summarisation:
• For each sentence, we can classify: whether it should be included in
the summary or not.

• With more data, we can train our classifier instead of heuristic scoring.
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Machine-learning methods

A Trainable Document Summarizer. Kupiec et al., 1995.

The main idea of Kupiec et al., (1995):

Use text classification methods to extract sentences from the document.

Estimate the probability:

• Input: a sentence x from a document X, i.e., x ∈ X .

• Output: a binary label c whether sentence x should be included in a
summary Y .

• Training corpus: D = {(xi, ci)}ni=1.

• Goal of modeling: P (c|x)
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Machine-learning methods

Estimate the probability:

• Direct parameterisation from training corpus:

P (c|x) = count(c, x) ∈ D

count(x) ∈ D
(2)

x is a sentence, which is too sparse. For an unseen x∗, we cannot
estimate its probability using MLE!

• Instead, we use generative method for parameterization (e.g., Näıve
Bayes classifier):

P (c|x) = P (x|c)P (c)

P (x)
(3)

note: P (x) is a constant and can be ignored (because it is the same for
all sentences). P (c) is easy to estimate, which is the frequency of label
c in training data, and can also be ignored in this task.
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Machine-learning methods

Kupiec et al., (1995)’s Näıve Bayes classifier:

• Thus, we can estimate the probability by:

P (c|x) ∝ P (x|c) (4)

• Assume x can be represented by independent features (e.g., word, etc):

P (x|c) = P (f1, f2, ..fn|c) = P (f1|c)P (f2|c)...P (fn|c) (5)

• Then we can estimate P (fi|c) by its frequency in the training data, i.e.:

P (fi|c) =
count(fi, c) ∈ D

count(c) ∈ D
(6)

• Finally:

P (c|x) ∝ P (x|c) ≈ P (f1, f2, ..fn|c) ≈
n∏

i=1

P (fi|c) (7)
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Machine-learning methods

Kupiec et al., (1995)’s Näıve Bayes classifier:

• We estimate the probability by:

P (c|x) ∝
n∏

i=1

P (fi|c) (8)

• Now, we can select summary sentences by their probabilities, or we can
learn a threshold from the training corpus.

Kupiec et al., (1995) consider rich features than simple word
frequency:

• Sentence Length Cut-off Feature: sentence longer than 5 words or not.

• Fixed-Phrase Feature: sentence contains specific phrases or not (“in
conclusion”, “in summary”, etc).

• . . .
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All summarisation methods we have introduced so far:
• lead-n (longest-n, last-n)

• Luhn’s (1958) word frequency

• Kupiec et al.’s (1995) näıve bayes classifer

They select sentences from the input text to
construct the output summary.
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Extractive summarisation:
• Methods that generate summaries by selecting and extracting important
sentences from the input text, i.e.:

Y = {y1, y2, . . . , yk} where yi ∈ X for each i = 1, 2, . . . , k (9)
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Consider the below case of dialogue summarisation: Which summary
is better?

Extractive summarisation:
• Lack coherence between sentences.

• Redundant information.

• Can be difficult to understand with the original context.
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Abstractive summarisation:

With the development of deep-learning technologies and the availability
of large corpora, generative models can deeply understand input text and
generate new sentences.

21 of 32



Deep-learning based method

Since we are dealing with two texts, can we model it directly?

• Directly map one sequence into another sequence.

• Actually, an RNN can be potentially used to generate a sequence:

• Note:
• Here, the alignment between X and Y is mostly explicit, e.g., a

one-to-one correspondence (xi is the current stock information, and yi is
the predicted stock prices of tomorrow).

• X and Y are of the same lenth.
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Deep-learning based method

Sequence to Sequence Learning with Neural Networks. Sutskever et
al., 2014.

The main idea of Sutskever et al., (2014):

• Introduce the encoder-decoder architecture:
• Encoder: convert the input sequence into a vector
• Decoder: generate output sequence progressively from the vector.

• Aim to map two sequences of different lengths and without a fixed
one-to-one alignment (summarisation, translation, etc).
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Deep-learning based method

Method of Sutskever et al., (2014):

• Input: an input sequence (e.g., a document) X = x1, x2, . . . , xm. xi is
the i-th token in X and m is the length of X.

• Output: an output sequence (e.g., a summary) Y = y1, y2, . . . yn. yi is
the i-th token in Y and n is the length of Y .

• Training corpus: D = {(Xi, Yi)}li=1.

• Modeling: P (Y |X).
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Deep-learning based method

Let’s quickly recall how to encode text using RNN:

• Encode the text using a uni-directional RNN (LSTM):

heni+1 = RNN(heni , emben(xi+1)) (10)

• emb is the embedding function, which maps the token xi into an
embedding vector. emb can be randomly initialized or using a pre-trained
embedding, and can be trained together with RNN weights.

• hen
i is the hidden state at time step i. hen

0 is the initial state, which can
be zero-initialized but usually initialized using

∑m
i=1 emb(xi).

• We take the final hidden state as the sentence representation: hen = hen
m .
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Deep-learning based method

Let’s quickly recall how to encode text using RNN:

• Or we can use other neural networks, such as Bi-RNN:

←−
hen
i = RNN(

←−−
hen
i+1, emben(xi)) (11)

−→
hen
i = RNN(

−−→
hen
i−1, emben(xi)) (12)

hen
m = [

−→
hen
m ;
←−
hen
1 ] (13)
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Deep-learning based method

How to decode a text from a vector?
• Now, we already have a hidden state vector hen

m that can represent the
input sequence, and our goal is to model P (Y |X):

P (Y |X) = P (y1, y2, . . . , yn|x1, x2, . . . , xm) (14)

• Directly generating the entire Y at one time is difficult.
• Y is sparse.
• For sentences, there are dependencies between tokens.

• How to map an X of m token to a Y of n tokens?
• Can we predict m first before generating Y ? Even humans cannot do it

accurately.
• And do we really care about m? We only care when and how the

decoder should stop decoding.
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Deep-learning based method

At decoding time step i:

• Compute the hidden state of the decoder:

hde
i = RNN(hde

i−1, embde(yi−1)) (15)

• Can embde be same as emben?
• Note at the beginning:

• y0 is a special token <bos>.
• Initialize the hidden state using the encoder hidden state, i.e., hde

0 = hen.
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Deep-learning based method

At decoding time step i:

• Map the hidden state hde
i to output probabilities of tokens:

oi = Whde
i + b (16)

pi = softmax(oi) (17)

• Note:
• oi is the unnormalized score over the decoder vocabulary.
• pi is the normalized probability distribution over the vocabulary.

29 of 32



Deep-learning based method

At decoding time step i:

• Finally we choose the output token of the highest probability:

yi = argmax(pi) (18)

Stop decoding when <eos> is predicted.
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Deep-learning based method

Training:

• Given the input X and output Y , we can optimize the model in a
teacher-forcing manner:

P (Y |X) = P (y1, . . . , yn|x1, . . . , xm) (19)

=
n∏

i=1

P (yi|X, y1, . . . , yi−1) (20)

• At each time step, instead of using the model’s prediction ŷi−1 from the
previous step as input, we provide the actual ground truth yi−1.

• More stable and avoid errors propagation from previous predictions.

• For each data, we use the negative log-likelihood to calculate the loss:

L = −
n∑

i=1

logP (yi|X, y1, . . . , yi−1) (21)
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Reading

• Part II: NLP Applications. D Jurafsky and J Martin. Speech and
Language Processing
web.stanford.edu/~jurafsky/slp3/3.pdf

• Chapter 7: Neural Networks and Neural Language Models. D Jurafsky
and J Martin. Speech and Language Processing
web.stanford.edu/~jurafsky/slp3/7.pdf
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