Overview of Natural Language Processing Part II & ACS L390

Lecture 9: Projection, Dependency and Attention

Weiwei Sun

Department of Computer Science and Technology University of Cambridge

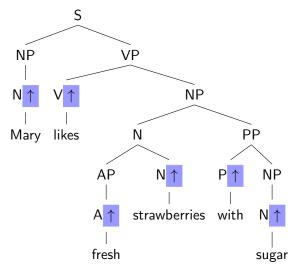
Michaelmas 2024/25

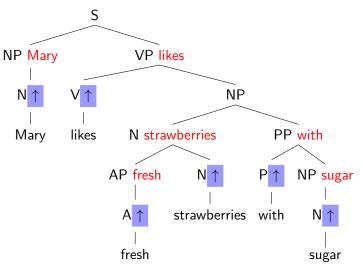
I think the deepest property of language and puzzling property that's been discovered is what is sometimes called structure dependence. [...] Linear closeness is an easy computation, but here you're doing a much more, what looks like a more complex computation.

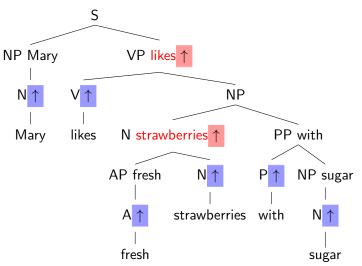
Lecture 9: Projection, Dependency and Attention

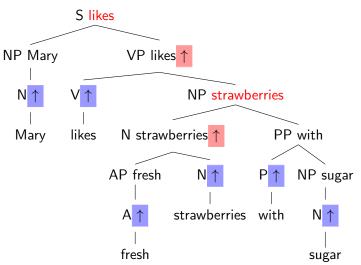
- 1. Projection and dependency
- 2. Mild context-sensitivity
- 3. Attention and transformer

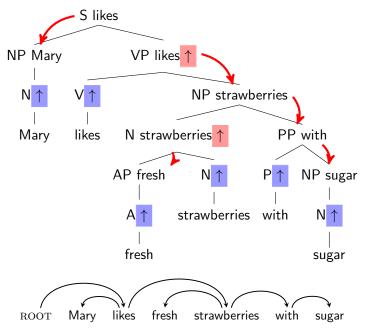
Projection and dependency









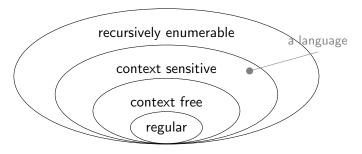


Mildly Context-Sensitive Languages

Reminder: Chomsky Hierarchy

Grammar	Languages	Production rules
Type-0	Recursively enumerable	$\alpha \rightarrow \gamma$
Type-1	Context-sensitive	$\alpha A\beta \rightarrow \alpha \gamma \beta$
Type-2	Context-free	$A \rightarrow \gamma$
Type-3	Regular	$A \rightarrow a$
		$A {\rightarrow} aB$

 $a \in N$; $\alpha, \beta \in (N \cup \Sigma)^*, \gamma \in (N \cup \Sigma)^+$



Challenge

Cross-serial dependencies in Swiss German ... das mer em Hans es huus hälfed aastriiche ... that we $Hans_{Dat}$ house_{Acc} help paint

... that we helped Hans paint the house

... das mer d'chind em Hans es huus lönd hälfe aastriiche ... that we the children_{Acc} $Hans_{Dat}$ house_{Acc} let help paint ... that we let the children help Hans paint the house

Cross-serial dependencies in Dutch

...dat Wim Jan Marie de kinderen zag helpen leren zwemmen ...that Wim Jan Marie the children saw help teach swim ...that Wim saw Jan help Marie teach the children to swim

Cross-serial dependencies

Cross-serial dependencies in Dutch

...dat Wim Jan Marie de kinderen zag helpen leren zwemmen ...that Wim Jan Marie the children saw help teach swim

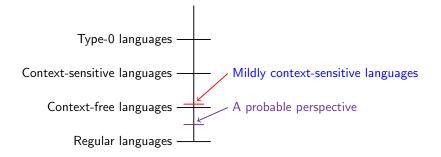
... that Wim saw Jan help Marie teach the children to swim

dat Wim Jan Marie de kinderen zag helpen leren zwemmen

Mildly Context-Sensitive Languages

With a *possibility* perspective

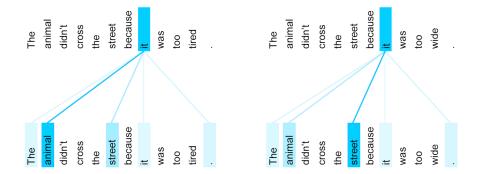
Natural languages are provably non-context-free. Natural languages = mildly context-sensitive languages?



Coreference

(1) a. The chicken didn't cross the street because it was too tired.

b. The chicken didn't cross the street because it was too wide.



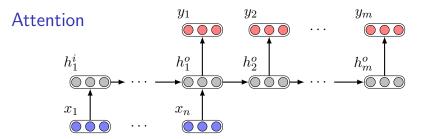
Attention and Transformer

Key milestones

- Before 2014: RNN/LSTM
- Attention 2015: Bahdanau, Cho and Bengio. Neural machine translation by joint learning to align and translate.
- Transformer 2017: Google's "Attention is All Your Need"
- Pre-trained Models 2018-: BERT, GPT, etc.

Key milestones

- Before 2014: RNN/LSTM
- Attention 2015: Bahdanau, Cho and Bengio. Neural machine translation by joint learning to align and translate.
- Transformer 2017: Google's "Attention is All Your Need"
- Pre-trained Models 2018-: BERT, GPT, etc.



- We have encoder hidden states $h_i^i,\ldots,h_n^i\in\mathbb{R}^h$
- On timestep t, we have decoder hidden state $h^o_t \in \mathbb{R}^h$
- We get attention scores e^t for step t:

$$e^{t} = [(h_{t}^{o})^{\top}h_{1}^{i}, (h_{t}^{o})^{\top}h_{2}^{i}, \dots, (h_{t}^{o})^{\top}h_{n}^{i}] \in \mathbb{R}^{n}$$

• We get a distribution by applying softmax:

$$\alpha^t = \texttt{softmax}(e^t)$$

A weighted sum of encoder hidden states is then derived:

$$\boldsymbol{a}^t = \sum_{k=1}^n \alpha_k h_k^i \in \mathbb{R}^h$$

Transformer

Attention Is All You Need

Ashish Vaswani* Google Brain avaswani@google.com Noam Shazeer* Google Brain noam@google.com Niki Parmar* Google Research nikip@google.com Jakob Uszkoreit* Google Research usz@google.com

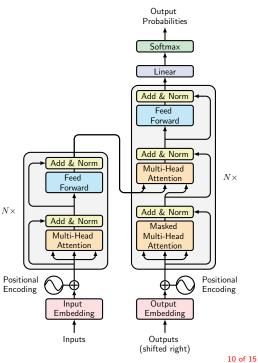
Llion Jones* Google Research llion@google.com Aidan N. Gomez^{*}[†] University of Toronto aidan@cs.toronto.edu Łukasz Kaiser* Google Brain lukaszkaiser@google.com

Illia Polosukhin*[‡] illia.polosukhin@gmail.com

Transformer

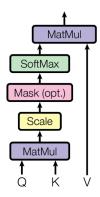
Transformer is all about (self) attention.

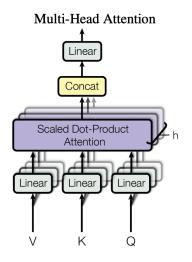
Self-attention is encoderencoder (or decoder-decoder) attention where each word attends to each other word within the input (or output).



Multi-head attention

Scaled Dot-Product Attention





Self-attention

• For each word x_i , calculate its query, key and value:

$$q_i = W^Q x_i; \quad k_i = W^K x_i; \quad v_i = W^V x_i$$

• Calculate attention score between query and keys:

$$e_{ij} = \frac{q_i \cdot k_j}{\sqrt{d_k}}$$

• Apply softmax to normalise attention scores:

$$\alpha_{ij} = \texttt{softmax}(e_{ij})$$

• Take a weighted sum of values:

$$o_j = \sum_j \alpha_{ij} v_j$$

All words attend to all words in previous layer.

As Matrix multiplication

- Packing the input embeddings for the N tokens of the input sequence into a single matrix: $X \in \mathbb{R}^{N \times d}$. Each row is the embedding of one token.
- Key and query matrices (denoted as W^K and W^Q) are of size $d \times d_k$
- Value matrix is of size $d \times d_v$

$$Q = XW^Q K = XW^K V = XW^V$$

Attention matrix

$$A = \texttt{softmax}(\frac{QK^T}{\sqrt{d_k}})V$$

Multi-head attention

$$head_i = \text{SelfAttention}(Q^i, K^i, V^i)$$

MultiHeadAttention $(X) = \text{concat}(head_1, head_2, ...)W^O$

Residual connection and layer normalisation

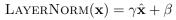
 $N \times$

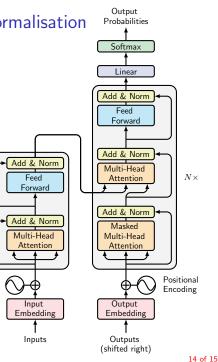
Positional

Encoding

- Residual connection: $x \mapsto f(x) + x.$
- LayerNorm is applied to a single vector in a hidden layer.







Reading

D Jurafsky and J Martin. Speech and Language Processing.

- §18.1 and §18.4. Dependency Parsing. Speech and Language Processing. D Jurafsky and J Martin. https://web.stanford.edu/~jurafsky/slp3/18.pdf
- Chapter 9. The Transformer. https://web.stanford.edu/~jurafsky/slp3/9.pdf.