Attention is not not explanation

a.k.a. some things Mark said were spurious

Sarah Wiegrieffe & Yuval Pinter

Sidharrth Nagappan University of Cambridge

Apophatic Argument

Apophatic theology is a form of theological thinking and religious practice which attempts to approach an unknown enigma, by **negation**, **to speak only in terms of what may not be said about the perfect goodness that is the enigma**.

The Enigma is Attention. By the end of the presentation, you'll understand why this is, at best, an apophatic argument.

- Attention is not always a perfect, "faithful" explanation
- Some tasks barely need attention

Agreements & Disagreements

- Multiple explanations do not mean attention fails
- Detaching attention from the rest of the model is an unfair test.

Let's break down each fundamental claim made by Jain & Wallace

for the same final prediction, then attention cannot be a faithful explanation.

Jain & Wallace: If you can find multiple diverse attention distributions

for the same final prediction, then attention cannot be a faithful explanation.

Counter: Attention is one plausible explanation, not the only explanation.

An explanation need not be unique to be helpful.

Jain & Wallace: If you can find multiple diverse attention distributions

Jain & Wallace: Attention weights can be trained, manipulated and re-assigned as independent, standalone units

Jain & Wallace: Attention weights can be trained, manipulated and re-assigned as independent, standalone units

You can't just cut out the attention and shuffle it — you're destroying neural links with other layers.

- **Counter**: Treating attention scores in isolation ignores the fact that the mechanism is jointly trained with the rest of the network.

An adversarial attack should adjust all relevant parameters, not just the attention <u>vector</u>.

This is not some magical latent distribution.

but look completely different.

 $\alpha_{original}$

Jain & Wallace: Adversarial training shows attention is easily manipulable. We create adversarial attention distributions that maintain model accuracy

 $\alpha_{adversarial}$

but look completely different.

Counter 1: Baseline variance matters—some attention drift is natural.

Even training runs with different seeds cause attention to vary.

J&W must consider what is baseline natural variance and what is adversarial variance, to see how *surprising* or *harmful* they actually are.

Jain & Wallace: Adversarial training shows attention is easily manipulable. We create adversarial attention distributions that maintain model accuracy

Figure 3: Densities of maximum JS divergences (x-axis) as a function of the max attention (y-axis) in each instance between the base distributions and: (a-d) models initialized on different random seeds; (e-f) models from a perinstance adversarial setup (replication of Figure 8a, 8c resp. in Jain and Wallace (2019)). In each max-attention bin, top (blue) is the negative-label instances, bottom (red) positive-label instances.

Jain & Wallace: Adversarial training shows attention is easily manipulable. We create adversarial attention distributions that maintain model accuracy but look completely different.

Counter 2: You are modifying attention vectors on an instance-by-instance basis. You are cheating by creating a different, tailored adversarial distribution perexample

Proposition: Model-Consistent Training \rightarrow A *single* set of model parameters must produce *all* adversarial attentions across the entire dataset

Model-Consistent Training

 $L(M_a, M_b) = \mathrm{TV}$

$$D(\hat{y}_a, \hat{y}_b) - \lambda KL(\alpha_a \| \alpha_b)$$

Model-Consistent Training

 $L(M_a, M_b) = \text{TVD}(\hat{y}_a, \hat{y}_b) - \lambda \text{KL}(\alpha_a || \alpha_b)$

Diverge the attention distributions

When you do this **correctly**, attention doesn't shift so aggressively

If the way you generate adversarial attention is spurious, then any results from those adversarial vectors is also spurious!

Jain & Wallace: If attention really is that important \rightarrow then altering it in certain ways should degrade performance

But it didn't always \rightarrow so attention may not be important.

Jain & Wallace: If attention really is that important \rightarrow then altering it in certain ways should degrade performance

But it didn't always \rightarrow so attention may not be important.

No need Uniform attention \approx _ attention \rightarrow Bad testbed! Learned attention anyway!

feature importance, so it's a subpar representation of token importance.

Jain & Wallace: Attention does not correlate with gradient-based/leave-one-out

Jain & Wallace: Attention does not correlate with gradient-based/leave-one-out feature importance, so it's a subpar representation of token importance.

Counter: They are different neural representations. Attention means something. When an MLP only sees attention weights, it still performs better than uniform / random initialisation.

Freeze the RNN's learned attention weights and use \longrightarrow them in a simpler MLP.

If these weights truly highlight important tokens, → And it does! → And it does! → meaningful token uniform or random weighting

Guide weights	Diab.	Anemia	SST
UNIFORM TRAINED MLP BASE LSTM	0.404 0.699 0.753	0.873 0.920 0.931	0.812 0.817 0.824
Adversary (4)	0.503	0.932	0.592

Table 3: F1 scores on the positive class for an MLP model trained on various weighting guides. For AD-VERSARY, we set $\lambda \leftarrow 0.001$.

IMD

Positives

- Methodology is very rigorous \rightarrow paper carefully and empirically attacks each claim made by Jain & Wallace
- Model-consistent adversarial training is a good contribution
- Very straightforward diagnostics and baselines that add context to Jain & Wallace's results
- Doesn't make overly bold claims \rightarrow acknowledges that there are limits to attention's explainability
- Pretty solid paper almost as well-cited as the original \rightarrow says a lot

- A bit confusing \rightarrow Argues that attention is Methodology is very rigorous \rightarrow paper carefully meaningful, but this doesn't necessarily make it and empirically attacks each claim made by Jain a good *explanation* & Wallace
- Model-consistent adversarial training is a good contribution
- Very straightforward diagnostics and baselines that add context to Jain & Wallace's results
- Doesn't make overly bold claims \rightarrow acknowledges that there are limits to attention's explainability
- Pretty solid paper almost as well-cited as the original \rightarrow says a lot

Remember Apophatic Theology

Positives & Negatives

- Instead of **proving** that attention is explanatory, the paper focuses on **disproving** claim that it is *not* explanatory by attacking Jain & Wallace's methodology
- What even is explanation?
- So many survey papers came after questioning the role of attention - nitpicking waste of academic resources?

Attention is all you need it to be

It's not a perfect explanation, but it's somewhat meaningful ...*if that matters to you!*

Thank you!