

Attention is not Explanation

Mark Jacobsen

Assumptions and Research Questions

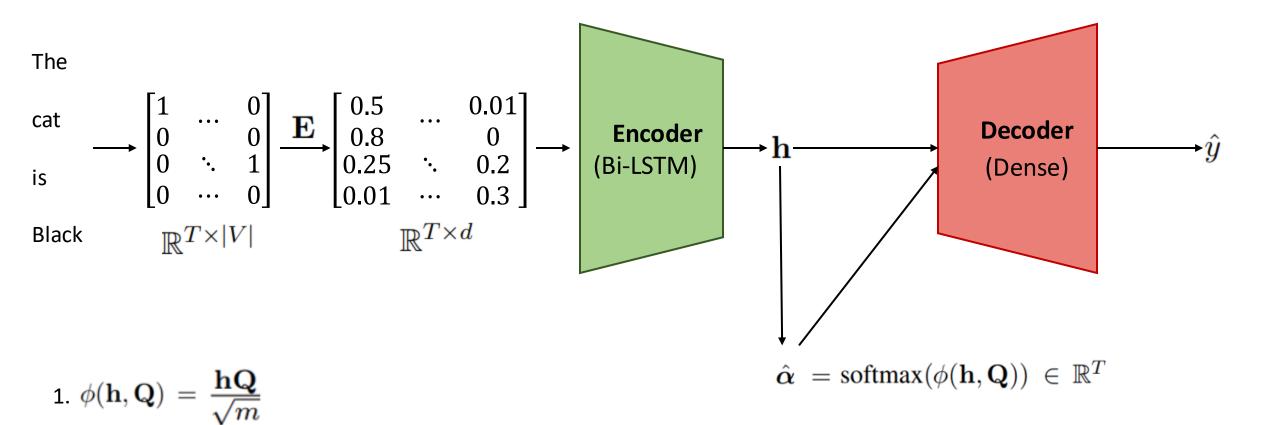
Questions:

Does attention provide model transparency? Are attended-to features responsible for outputs?

Authors claim: No

If yes:

1. Attention weights should correlate with feature importance methods.


- Gradient-based methods
- Leave-one-out

2. Alternative attention weight configurations should yield corresponding changes in prediction.

Experiments

Attention / Model Architecture

2.
$$\phi(\mathbf{h}, \mathbf{Q}) = \mathbf{v}^T \tanh(\mathbf{W_1}\mathbf{h} + \mathbf{W_2}\mathbf{Q})$$

Experiments

Mark Jacobsen

Datasets / NLP Tasks

Sentiment Analysis:

- Stanford Sentiment Treebank (SST)

- IMDB Large Movie Revies Corpus

Other Binary Text Classification:

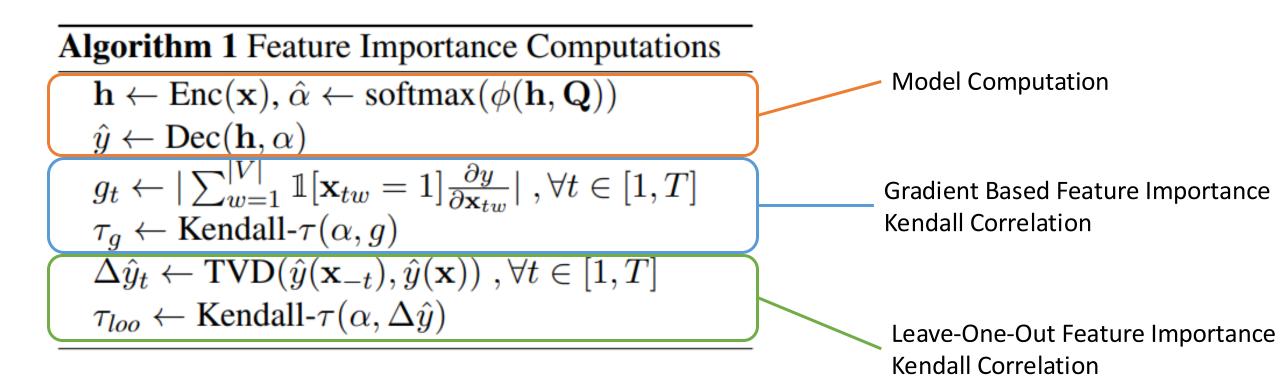
- Twitter Adverse Drug Reaction dataset
- 20 Newsgroups (Hockey vs Basketball)
- AG News Corpus

...

Natural Language Inference:

- SNLI Dataset

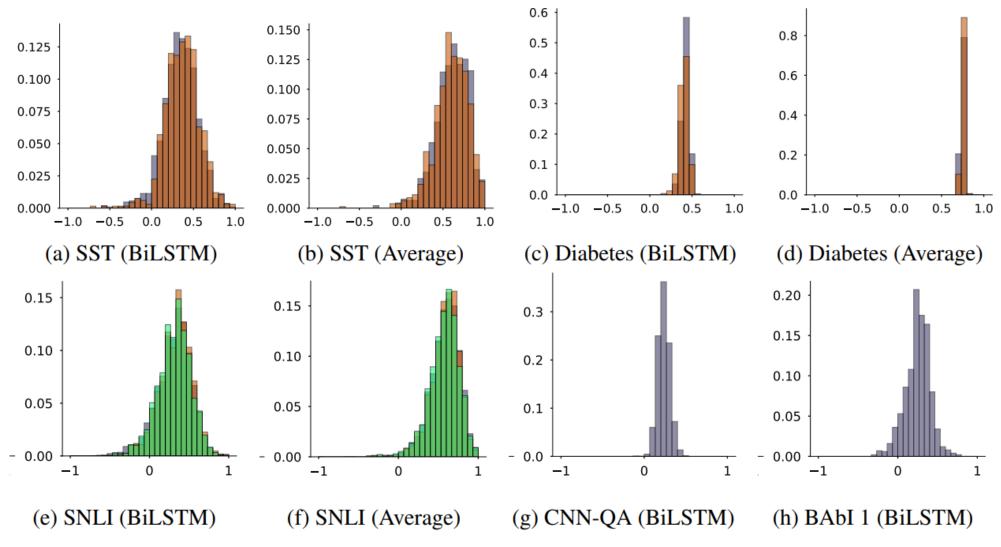
Question Answering:


- CNN News Articles
- bAbl

Dataset	V	Avg. length	Train size	Test size	Test performance
SST	16175	19	3034 / 3321	863 / 862	0.81
IMDB	13916	179	12500 / 12500	2184 / 2172	0.88
ADR Tweets	8686	20	14446 / 1939	3636 / 487	0.61
20 Newsgroups	8853	115	716 / 710	151 / 183	0.94
AG News	14752	36	30000 / 30000	1900 / 1900	0.96
Diabetes (MIMIC)	22316	1858	6381 / 1353	1295 / 319	0.79
Anemia (MIMIC)	19743	2188	1847 / 3251	460 / 802	0.92
CNN	74790	761	380298	3198	0.64
bAbI (Task 1 / 2 / 3)	40	8 / 67 / 421	10000	1000	1.0 / 0.65 / 0.64
SNLI	20982	14	182764 / 183187 / 183416	3219 / 3237 / 3368	0.78

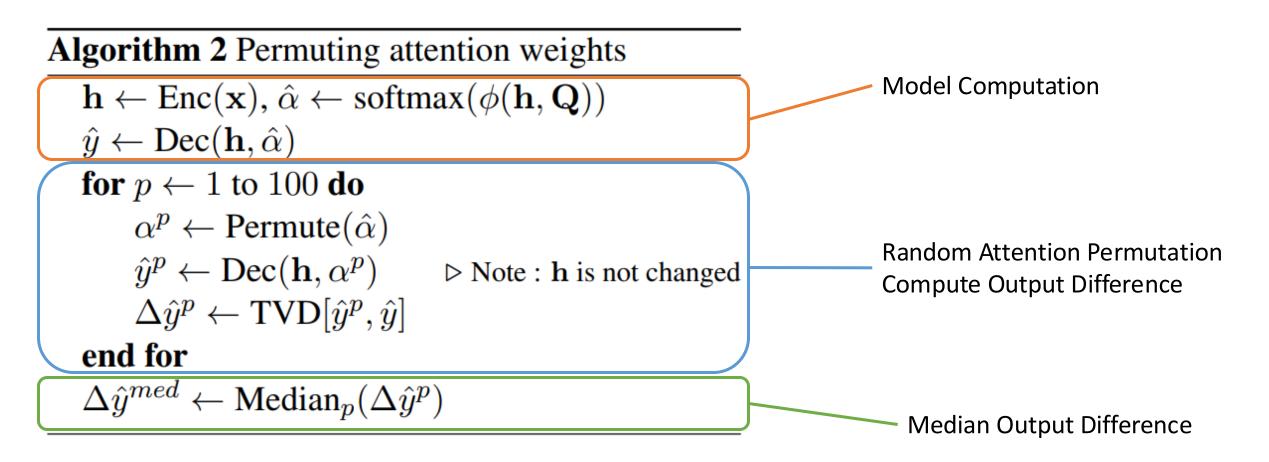
Feature Importance Correlation

1. Attention weights should correlate with feature importance methods.

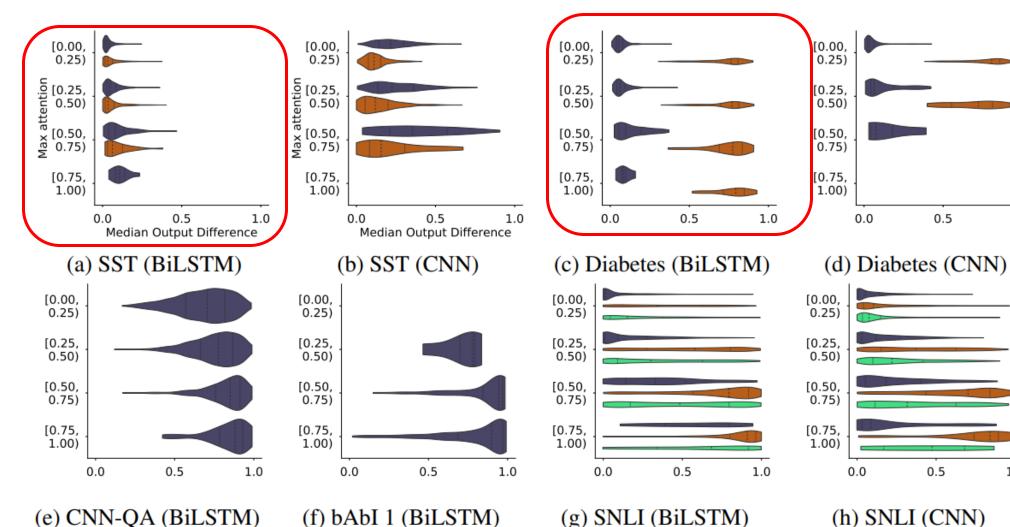


Feature Importance Correlation

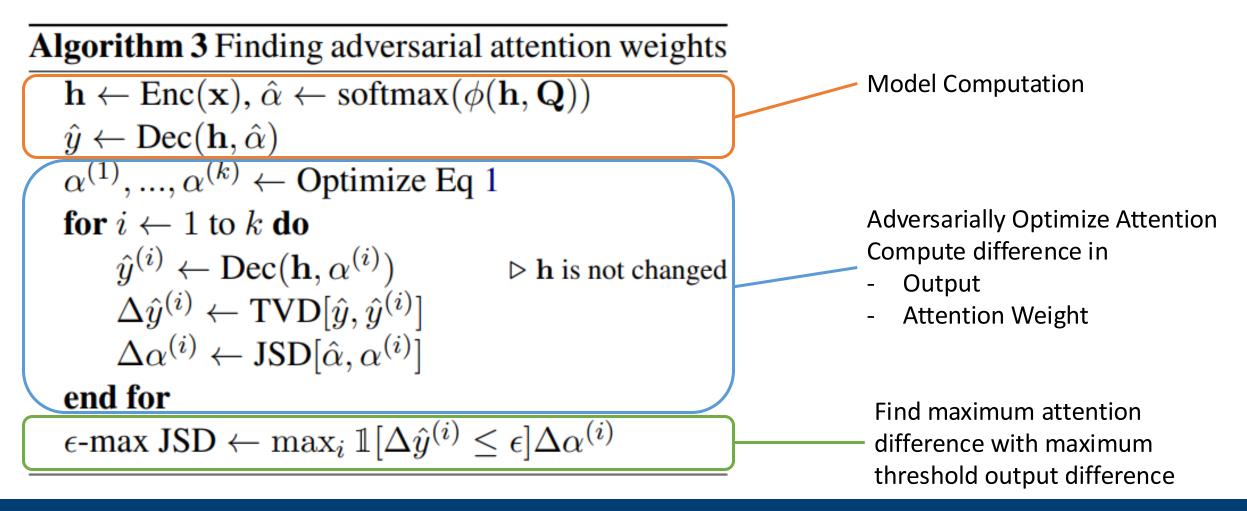
		Gradient (BiLSTM) τ_g		Gradient (Average) τ_g		Leave-One-Out (BiLSTM) τ_{loo}	
Dataset	Class	Mean \pm Std.	Sig. Frac.	Mean \pm Std.	Sig. Frac.	Mean \pm Std.	Sig. Frac.
SST	0	0.34 ± 0.21	0.48	0.61 ± 0.20	0.87	0.27 ± 0.19	0.33
	1	0.36 ± 0.21	0.49	0.60 ± 0.21	0.83	0.32 ± 0.19	0.40
IMDB	0	0.44 ± 0.06	1.00	0.67 ± 0.05	1.00	0.34 ± 0.07	1.00
	1	0.43 ± 0.06	1.00	0.68 ± 0.05	1.00	0.34 ± 0.07	0.99
ADR Tweets	0	0.47 ± 0.18	0.76	0.73 ± 0.13	0.96	0.29 ± 0.20	0.44
	1	0.49 ± 0.15	0.85	0.72 ± 0.12	0.97	0.44 ± 0.16	0.74
20News	0	0.07 ± 0.17	0.37	0.79 ± 0.07	1.00	0.06 ± 0.15	0.29
	1	0.21 ± 0.22	0.61	0.75 ± 0.08	1.00	0.20 ± 0.20	0.62
AG News	0	0.36 ± 0.13	0.82	0.78 ± 0.07	1.00	0.30 ± 0.13	0.69
	1	0.42 ± 0.13	0.90	0.76 ± 0.07	1.00	0.43 ± 0.14	0.91
Diabetes	0	0.42 ± 0.05	1.00	0.75 ± 0.02	1.00	0.41 ± 0.05	1.00
	1	0.40 ± 0.05	1.00	0.75 ± 0.02	1.00	0.45 ± 0.05	1.00
Anemia	0	0.47 ± 0.05	1.00	0.77 ± 0.02	1.00	0.46 ± 0.05	1.00
	1	0.46 ± 0.06	1.00	0.77 ± 0.03	1.00	0.47 ± 0.06	1.00
CNN	Overall	0.24 ± 0.07	0.99	0.50 ± 0.10	1.00	0.20 ± 0.07	0.98
bAbI 1	Overall	0.25 ± 0.16	0.55	0.72 ± 0.12	0.99	0.16 ± 0.14	0.28
bAbI 2	Overall	-0.02 ± 0.14	0.27	0.68 ± 0.06	1.00	-0.01 ± 0.13	0.27
bAbI 3	Overall	0.24 ± 0.11	0.87	0.61 ± 0.13	1.00	0.26 ± 0.10	0.89
SNLI	0	0.31 ± 0.23	0.36	0.59 ± 0.18	0.80	0.16 ± 0.26	0.20
	1	0.33 ± 0.21	0.38	0.58 ± 0.19	0.80	0.36 ± 0.19	0.44
	2	0.31 ± 0.21	0.36	0.57 ± 0.19	0.80	0.34 ± 0.20	0.40



Gradient Feature Importance Correlation

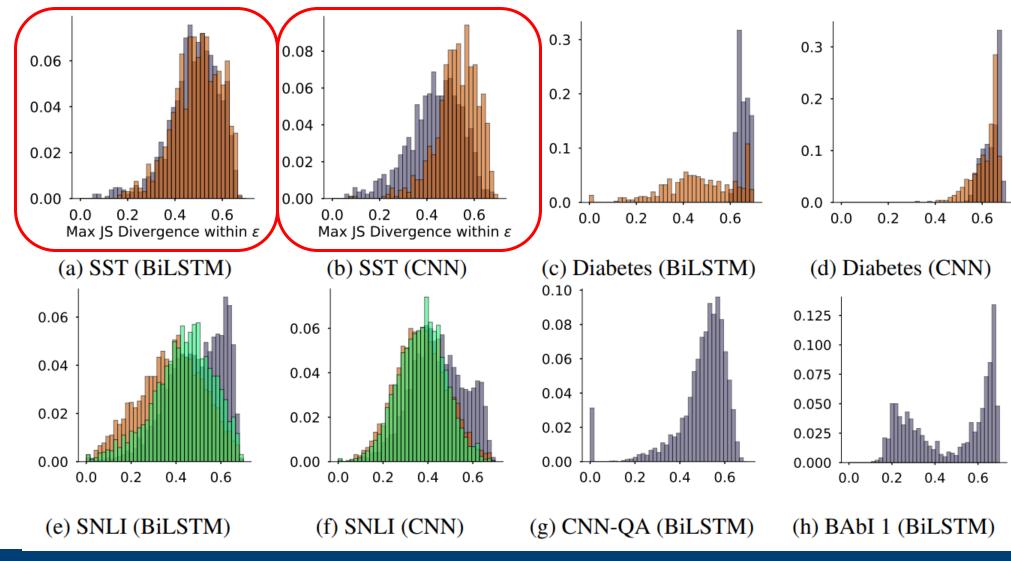

Attention Changes

2. Alternative attention weight configurations should yield corresponding changes in prediction.

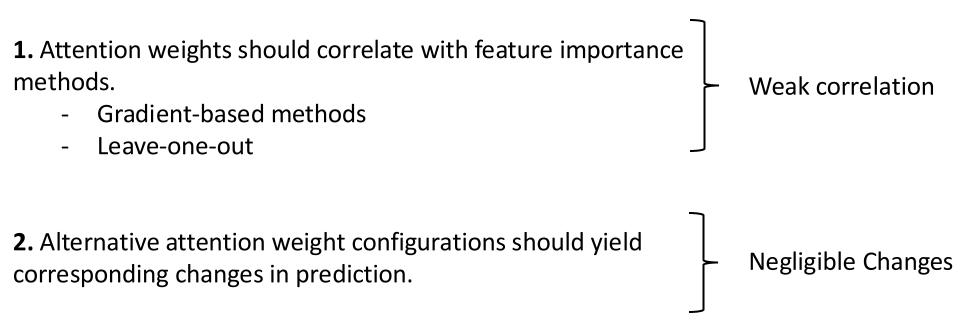

1.0

1.0

Random Attention Permutation


Adversarial Attention

2. Alternative attention weight configurations should yield corresponding changes in prediction.



Adversarial Attention

Results

Prior Assumptions

➔ Attention is Not Explanation

Discussion

Mark Jacobsen

Pros / Cons

Positive:

- Clear research question and experiments for evaluation
- Various datasets and empirical evidence to backup claims
- They use previously established definitions of "explainability" / "transparency"
 - Still up to debate

Negative:

- Questionable Assumptions
 - Using feature attribution as ground-truth
 - Explanations need to be exclusive
- Strong focus on binary classification and LSTMs
- Is changing the attention weights valid?
- Their own results sometimes show that attention can be explanation

Impact / Debate

impact / De	,Nato			2022	
Is Atte	(How) Ca Attention 2019 Explanati	n Become ion? \ N	2021 Why Attention May Not Be Interpretable?	Is Attention Explanation? An Introduction to the Debate	2023 SEAT: Stable and Explainable Attention
2019 Attention is not Explanation 2019 Attention is n not Explanation	not Inte	2020 is Attention Not So erpretable	2021 Is Sparse Attention more Interpretable?	2022 Attention canno be an Explanatio	

Sources

[1] Jain, S., & Wallace, B. C. (2019). Attention is not explanation. arXiv preprint arXiv:1902.10186. Retrieved from https://arxiv.org/abs/1902.10186.

[2] Wiegreffe, S., & Pinter, Y. (2019). Attention is not not explanation. arXiv preprint arXiv:1908.04626. Retrieved from https://arxiv.org/abs/1908.04626.

[3] Bibal, A., Cardon, R., Alfter, D., Wilkens, R., Wang, X., François, T., & Watrin, P. (2022). Is attention explanation? An introduction to the debate. In S. Muresan, P. Nakov, & A. Villavicencio (Eds.), Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers) (pp. 3889–3900). Association for Computational Linguistics. https://aclanthology.org/2022.ad-long.269/.

