
This Looks Like That: Deep 
Learning for Interpretable 
Image Recognition
David Demitri Africa
L193: Explainable AI



How would a 
radiologist look for 
tumors in a lung 
x-ray?



You would not:

➔ Compare it to every lung in existence



You would probably:

➔ Look at a textbook



How would you tell 
which person will 
do better in the half 
marathon?



Enter: the Prototypical Part Network
(not to be confused with Prototypical 
Networks which are different)



A Prototypical Part Network (ProtoPNet):

➔ Learns representative prototypes of 
each class

➔ Extracts features from an image and 
compares patches to each learned 
prototype

➔ Calculates similarity and votes



How would we build this?



First, take a standard CNN.

Given an input image x, the CNN 
produces a latent feature representation 
f(x) of size H × W × D.



Second, add a prototype layer.

Add m learnable prototypes 
P = { pj }j=1

m

where each prototype has dimensions
 H1 × W1 × D



Second, add a prototype layer.

For each prototype pj and patch z (a 
subtensor from f(x) with same size as pj), 
the network computes the squared 
L2-distance.



Second, add a prototype layer.

We then invert the distances to get a 
similarity score for each patch…



Second, add a prototype layer.

…and reduce it for global max pooling.



Third, feed it into a fully connected 
layer…

…to produce logits which we softmax 
over to get predictions.



How would we do this?



Okay, how would we train this?



We do SGD on:

where 



We do SGD on:

where 



For the last layer, we initialize 
weights as:

For each class k, prototype pj assigned 
to class k is given a positive weight while 
prototypes from other classes are given a 
negative weight. 



For the last layer, we initialize 
weights as:

Then we do convex optimization to 
guarantee sparsity



One concern!



Sketch of the theorem:

If prototype projection does not move the 
prototypes by much, the prediction does 
not change for examples that the model 
predicted correctly with some confidence 
before the projection.



Sketch of the proof:
➔ Our activation function is monotonic 

with respect to distance so a bounded 
change in distance is bounded in 
similarity score



Sketch of the proof:
➔ We already fine tuned our last layer to 

have weight 1 for correct class 
prototypes and 0 else

➔ If there are m prototypes per class, 
then the total change in logits is m 
times the original prototype change 
which we call Δmax



Sketch of the proof:
➔ If the difference between the logit of the 

correct class and that of the closest 
incorrect class is greater than 2Δmax 
then our prediction does not change



Results



Results



Results





Differences from other papers



Versus CBMs

➔ Does not require fine-grained labelling, 
image-level is fine

➔ Tries to separate the prototypical parts 
while CBM classes can share concepts



Other Case-based Techniques

➔ Main difference is that it is end-to-end, 
integrated into a neural network with 
better feature extraction



Prototypical Networks

➔ Does not require a decoder (which also 
produces unrealistic images in natural 
settings)

➔ More fine-grained comparisons, parts 
of images



Final thoughts
➔ Good paper, cool insight
➔ Not enough practical guidance
➔ Did not display final results very well
➔ Could have explained how to extend 

it to other domains
➔ Didn’t really explore the latent space 

all that much



Thanks for listening!


