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-How would a
radiologist look for
tumors in a lung
X-ray?




You would not:

=> Compare it to every lung in existence



You would probably:

-> ook at a textbook



How would you tell
which person will
do better in the half
marathon?
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—nter: the Prototypical Part Network
(not to be confused with Prototypical
Networks which are different)



A Prototypical Part Network (ProtoPNet):

=>» |earns representative prototypes of
each class

=> Extracts features from an image and
compares patches to each learned
prototype

-> (Calculates similarity and votes




How would we build this?



First, take a standard CNN.

Given an input image x, the CNN
produces a latent feature representation
f(x) of size H x W x D.



Second, add a prototype layer.

Add m learnable prototypes

P={p}_

where each prototype has dimensions
H1 X W1 x D



Second, add a prototype layer.

For each prototype P and patch z (a
subtensor from f(x) vvlth same size as p),
the network computes the squared
L-distance.

. ~ 2
d(Z, pj) = |12 = pjll;



Second, add a prototype layer.

We then invert the distances to get a
similarity score for each patch...

gp, (2) = log (d % p;) 1 )

d(i,pj) + €




Second, add a prototype layer.

...and reduce it for global max pooling.

55 (E) = B2y I (P



Third, feed it into a fully connected
layer...

...To produce logits which we softmax
over to get predictions.

logits (z) = Wh - |s1(x),s2(x), ..., 8m (33)]T
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Okay, how would we train this?



We do SGD on:

mln - Z CrsEnt (h 6 gy o f(@y), yz) + A\ Clst + Ao Sep,

1—=1

where



We do SGD on:

where

n n
1

1 : : . :

Clst = — E min min |z — p;|5;Sep = —— E min min Iz — p;l3-
n — j:p; €Py, z€patches(f(x;)) n “— j:p; &P, z€patches(f(x;))

L= —



For the last layer, we initialize
weights as:

-or each class k, prototype o assigned
to class K Is given a positive Welght while
orototypes from other classes are given a
negative weight.




For the last layer, we initialize
weights as:

Then we do convex optimization to
guarantee sparsity



One concern!

Projection of prototypes: To be able to visualize the prototypes as training image patches, we
project (“push”) each prototype p; onto the nearest latent training patch from the same class as that
of p;. In this way, we can conceptually equate each prototype with a training image patch. (Section
2.3 discusses how we visualize the projected prototypes.) Mathematically, for prototype p, of class
k,ie., p; € Py, we perform the following update:

p; < arg znenél |z — pj||2, where Z; = {z : z € patches(f(x;)) Vi s.t. y; = k}.
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Sketch of the theorem:

f prototype projection does not move the
orototypes by much, the prediction does
not change for examples that the model
oredicted correctly with some confidence
pefore the projection.




Sketch of the proof:
=> Our activation function is monotonic
with respect to distance so a bounded
change in distance is bounded in
similarity score



Sketch of the proof:
=> We already fine tuned our last layer 1o
nave weight 1 for correct class
orototypes and O else
=> |f there are m prototypes per class,
then the total change in logits is m
times the original prototype change
which we call A




Sketch of the proof:

-> If the difference between the logit of the
correct class and that of the closest
incorrect class Is greater than 2A
then our prediction does not change



Results



Table 1: Top: Accuracy comparison on cropped bird images of CUB-200-2011
Bottom: Comparison of our model with other deep models

Base ProtoPNet | Baseline Base ProtoPNet | Baseline

VGGI16 76.1 £0.2 | 74.6 £ 0.2 || VGGI19 780+0.2 | 751+ 04

Res34 792 4+0.1 | 823403 || Res152 780+03 | 81.5+04

Densel21 | 80.2 0.2 | 80.5 £ 0.1 || Densel61 | 80.1 0.3 | 82.2 + 0.2
Interpretability Model: accuracy

None

B-CNNJ25]: 85.1 (bb), 84.1 (full)

Object-level attn.

CAM[56]: 70.5 (bb), 63.0 (full)

Part-level
attention

Part R-CNN|[53]: 76.4 (bb+anno.); PS-CNN [15]: 76.2 (bb+anno.);
PN-CNN ([3]: 85.4 (bb+anno.); DeepLAC[24]: 80.3 (anno.);
SPDA-CNN|[52]: 85.1 (bb+anno.); PA-CNN|[19]: 82.8 (bb);
MG-CNN]J46]: 83.0 (bb), 81.7 (full); ST-CNN][16]: 84.1 (full);
2-level attn.[49]: 77.9 (full); FCAN[26]: 82.0 (full);

Neural const.[37]: 81.0 (full); MA-CNNI[55]: 86.5 (full);
RA-CNN]|7]: 85.3 (full)

Part-level attn. +
prototypical cases

ProtoPNet (ours): 80.8 (full, VGG19+Densel21+Densel61-based)
84.8 (bb, VGG19+ResNet34+DenseNetl21-based)




looks like

looks like

(a) Object attention (b) Part attention (c) Part attention + comparison with learned
(class activation map) (attention-based models) prototypical parts (our model)

Figure 4: Visual comparison of different types of model interpretability: (a) object-level attention
map (e.g., class activation map [56]); (b) part attention (provided by attention-based interpretable
models); and (c) part attention with similar prototypical parts (provided by our model).



3 Case study 2: car model identification

In this case study, we apply our method to car model identification. We trained our ProtoPNet on
the Stanford Cars dataset [20] of 196 car models, using similar architectures and training algorithm
as we did on the CUB-200-2011 dataset. The accuracy of our ProtoPNet and the corresponding
baseline model on this dataset 1s reported in Section S6 of the supplement. We briefly state our
performance here: the test accuracy of our ProtoPNet is comparable with that of the corresponding
baseline model (< 3% difference), and that of a combined network of a VGG19-, ResNet34-, and
DenseNetl21-based ProtoPNet can reach 91.4%, which is on par with some state-of-the-art models
on this dataset, such as B-CNN [25] (91.3%), RA-CNN (7] (92.5%), and MA-CNN [55] (92.8%).



Differences from other papers



Versus CBMs

=> Does not require fine-grained labelling,
image-level Is fine

=> Tries to separate the prototypical parts
while CBM classes can share concepts




Other Case-based Techniques

-=>» Main difference iIs that it Is end-to-end,
integrated into a neural network with
netter feature extraction




Prototypical Networks

=> Does not require a decoder (which also

oroduces unrealistic images in natural
settings)

-> More fine-grained comparisons, parts
of Images




Final thoughts

Good paper, cool insight

Not enough practical guidance

Did not display final results very well
Could have explained how to extend
it to other domains

Didn’t really explore the latent space
all that much
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Thanks for listening!



