
Finding Transformer Circuits with Edge Pruning

L193 Explainable Artificial Intelligence

Adithya Bhaskar, Alexander Wettig, Dan Friedman, Danqi Chen

Overview

Background

We already saw ACDC:

 1. Build a dataset of a specific behaviour

 2. Overwrite the value of an edge in the computational graph

 3. If the output doesn’t change, then remove the edge from our circuit

 4. Repeat until we have checked all edges

[1] Conmy, Arthur, et al. "Towards automated circuit discovery for mechanistic

interpretability." Advances in Neural Information Processing Systems 36

(2023): 16318-16352.

Background

We already saw ACDC:

 1. Build a dataset of a specific behaviour

 2. Overwrite the value of an edge in the computational graph

 3. If the output doesn’t change, then remove the edge from our circuit

 4. Repeat until we have checked all edges

Edge Attribution Patching (EAP) linearly approximates activation

patching by using gradients to assign importance to each edge.

[2] Syed, Aaquib, Can Rager, and Arthur Conmy. "Attribution patching

outperforms automated circuit discovery." arXiv preprint

arXiv:2310.10348 (2023).

Background

ACDC:

+ finds good circuits

- slow

EAP:

- finds worse circuits

+ fast

Background

ACDC:

+ finds good circuits

- slow

EAP:

- finds worse circuits

+ fast

We want:

 + finds good circuits

 + fast

Background

ACDC:

+ finds good circuits

- slow

EAP:

- finds worse circuits

+ fast

We want:

 + finds good circuits

 + fast

Scale to big datasets / models

Background

ACDC:

+ finds good circuits

- slow

EAP:

- finds worse circuits

+ fast

We want:

 + finds good circuits

 + fast

Scale to big datasets / models

Build circuits from more fine-

grained components

Background

Edge pruning aims to find useful circuits efficiently by

using gradient descent to prune edges.

Method

1. Build computational graph with disentangled residual stream

[3] Bhaskar, Adithya, et al. "Finding transformer circuits with edge

pruning." Advances in Neural Information Processing Systems 37 (2024):

18506-18534.

Method

1. Build computational graph with disentangled residual stream

2. On edge 𝑗 → 𝑖, associate a parameter 𝑧𝑗𝑖, so that the

 node at the end of the edge takes value

𝑦𝑖 = 𝑓𝑖 ෍

𝑗 𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚 𝑜𝑓 𝑖

𝑧𝑗𝑖𝑦𝑗 + 1 − 𝑧𝑗𝑖 ෤𝑦𝑗

[3] Bhaskar, Adithya, et al. "Finding transformer circuits with edge

pruning." Advances in Neural Information Processing Systems 37 (2024):

18506-18534.

Method

1. Build computational graph with disentangled residual stream

2. On edge 𝑗 → 𝑖, associate a parameter 𝑧𝑗𝑖, so that the

 node at the end of the edge takes value

𝑦𝑖 = 𝑓𝑖 ෍

𝑗 𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚 𝑜𝑓 𝑖

𝑧𝑗𝑖𝑦𝑗 + 1 − 𝑧𝑗𝑖 ෤𝑦𝑗

output of node j counterfactual output

of node j

[3] Bhaskar, Adithya, et al. "Finding transformer circuits with edge

pruning." Advances in Neural Information Processing Systems 37 (2024):

18506-18534.

layer i

Method

1. Build computational graph with disentangled residual stream

2. On edge 𝑗 → 𝑖, associate a parameter 𝑧𝑗𝑖, so that the

 node at the end of the edge takes value

𝑦𝑖 = 𝑓𝑖 ෍

𝑗 𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚 𝑜𝑓 𝑖

𝑧𝑗𝑖𝑦𝑗 + 1 − 𝑧𝑗𝑖 ෤𝑦𝑗

output of node j counterfactual output

of node j

3. Learn 𝑧𝑗𝑖 by gradient descent, minimising:

ℒ = ℒ𝐾𝐿 + ℒ𝑠𝑝𝑎𝑟𝑠𝑖𝑡𝑦

Some details omitted for clarity (see section on Details of the Edge Pruning process in the paper)

*

*

layer i

Method

1. Build computational graph with disentangled residual stream

2. On edge 𝑗 → 𝑖, associate a parameter 𝑧𝑗𝑖, so that the

 node at the end of the edge takes value

𝑦𝑖 = 𝑓𝑖 ෍

𝑗 𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚 𝑜𝑓 𝑖

𝑧𝑗𝑖𝑦𝑗 + 1 − 𝑧𝑗𝑖 ෤𝑦𝑗

output of node j counterfactual output

of node j

3. Learn 𝑧𝑗𝑖 by gradient descent, minimising:

ℒ = ℒ𝐾𝐿 + ℒ𝑠𝑝𝑎𝑟𝑠𝑖𝑡𝑦

change in outputs

compared to full network
Sparsity constraint on 𝑧

Some details omitted for clarity (see section on Details of the Edge Pruning process in the paper)

*

*

layer i

Method

1. Build computational graph with disentangled residual stream

2. On edge 𝑗 → 𝑖, associate a parameter 𝑧𝑗𝑖, so that the

 node at the end of the edge takes value

𝑦𝑖 = 𝑓𝑖 ෍

𝑗 𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚 𝑜𝑓 𝑖

𝑧𝑗𝑖𝑦𝑗 + 1 − 𝑧𝑗𝑖 ෤𝑦𝑗

3. Learn 𝑧𝑗𝑖 by gradient descent, minimising:

ℒ = ℒ𝐾𝐿 + ℒ𝑠𝑝𝑎𝑟𝑠𝑖𝑡𝑦

Some details omitted for clarity (see section on Details of the Edge Pruning process in the paper)

*

*

Method

1. Build computational graph with disentangled residual stream

2. On edge 𝑗 → 𝑖, associate a parameter 𝑧𝑗𝑖, so that the

 node at the end of the edge takes value

𝑦𝑖 = 𝑓𝑖 ෍

𝑗 𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚 𝑜𝑓 𝑖

𝑧𝑗𝑖𝑦𝑗 + 1 − 𝑧𝑗𝑖 ෤𝑦𝑗

3. Learn 𝑧𝑗𝑖 by gradient descent, minimising:

ℒ = ℒ𝐾𝐿 + ℒ𝑠𝑝𝑎𝑟𝑠𝑖𝑡𝑦

Some details omitted for clarity (see section on Details of the Edge Pruning process in the paper)

*

*

4. Round each 𝑧𝑗𝑖

Method

1. Build computational graph with disentangled residual stream

2. On edge 𝑗 → 𝑖, associate a parameter 𝑧𝑗𝑖, so that the

 node at the end of the edge takes value

𝑦𝑖 = 𝑓𝑖 ෍

𝑗 𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚 𝑜𝑓 𝑖

𝑧𝑗𝑖𝑦𝑗 + 1 − 𝑧𝑗𝑖 ෤𝑦𝑗

3. Learn 𝑧𝑗𝑖 by gradient descent, minimising:

ℒ = ℒ𝐾𝐿 + ℒ𝑠𝑝𝑎𝑟𝑠𝑖𝑡𝑦

Similar to previous pruning methods [4] but using edges for granularity

*

4. Round each 𝑧𝑗𝑖

[4] Louizos, Christos, Max Welling, and Diederik P. Kingma. "Learning sparse

neural networks through $ L_0 $ regularization." arXiv preprint

arXiv:1712.01312 (2017).

Results

Circuit performance:

Friends Juana and Kristi found a mango at

the bar. Kristi gave it to → Juana

[5] Wang, Kevin, et al. "Interpretability in the wild: a circuit for indirect object

identification in gpt-2 small." arXiv preprint arXiv:2211.00593 (2022).

Results

Circuit performance:

Friends Juana and Kristi found a mango at

the bar. Kristi gave it to → Juana

Performs better than ACDC and EAP on

experiments presented

[5] Wang, Kevin, et al. "Interpretability in the wild: a circuit for indirect object

identification in gpt-2 small." arXiv preprint arXiv:2211.00593 (2022).

Results

Efficiency:

[3] Bhaskar, Adithya, et al. "Finding transformer circuits with edge

pruning." Advances in Neural Information Processing Systems 37 (2024):

18506-18534.

Results

Efficiency:

Much faster than ACDC

in all tests

Faster than EAP for

large datasets

[3] Bhaskar, Adithya, et al. "Finding transformer circuits with edge

pruning." Advances in Neural Information Processing Systems 37 (2024):

18506-18534.

Summary of contributions

Goal: edge pruning aims to find useful circuits

efficiently by using gradient descent to prune edges

Summary of contributions

Performs gradient descent to

evaluate all edges in parallel

Goal: edge pruning aims to find useful circuits

efficiently by using gradient descent to prune edges

Explicitly optimises circuit

performance (unlike EAP)

Summary of contributions

Performs gradient descent to

evaluate all edges in parallel

Goal: edge pruning aims to find useful circuits

efficiently by using gradient descent to prune edges

Explicitly optimises circuit

performance (unlike EAP)

- Results suggest improved upon previous works

- Further analysis on circuits found, to indicate that they are interpretable [6]

[6] Makelov, Aleksandar, Georg Lange, and Neel Nanda. "Is this the subspace

you are looking for? an interpretability illusion for subspace activation

patching." arXiv preprint arXiv:2311.17030 (2023).

Limitations

- Does not prune individual weights

 - Lack of ablation of the hyperparameters e.g. mask initialisation strategy

 - Little comparison with channel pruning [7], which is very similar

 - No comparison to manually identified circuits for the same problems.

 - Requires a lot of of memory: 32 H100s

 - No discussion on why KL divergence loss is used rather than logit

difference (log 𝑃(𝑐𝑜𝑟𝑟𝑒𝑐𝑡) − log 𝑃(𝑚𝑖𝑠𝑙𝑒𝑎𝑑𝑖𝑛𝑔)), when previous methods

they cited used logit difference

[7] He, Yihui, Xiangyu Zhang, and Jian Sun. "Channel pruning for accelerating

very deep neural networks." Proceedings of the IEEE international conference

on computer vision. 2017.

Questions?

Transform 𝑧 to encourage

𝑧 ∈ {0,1}

Details of the sparsity loss

Apply masks to both the

edges and the nodes to

achieve better sparsity

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

