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Background

We already saw ACDC:

1. Build a dataset of a specific behaviour

2. Overwrite the value of an edge in the computational graph

3. If the output doesn’t change, then remove the edge from our circuit
4. Repeat until we have checked all edges

[1] Conmy, Arthur, et al. "Towards automated circuit discovery for mechanistic
interpretability.” Advances in Neural Information Processing Systems 36
(2023): 16318-16352.
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Background

We already saw ACDC:

1. Build a dataset of a specific behaviour

2. Overwrite the value of an edge in the computational graph

3. If the output doesn’t change, then remove the edge from our circuit

4. Repeat until we have checked all edges

Edge Attribution Patching (EAP) linearly approximates activation
patching by using gradients to assign importance to each edge.

[2] Syed, Aaquib, Can Rager, and Arthur Conmy. "Attribution patching
outperforms automated circuit discovery." arXiv preprint
arXiv:2310.10348 (2023).
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Background

ACDC: EAP:
+ finds good circuits - finds worse circuits
- slow + fast
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Background

ACDC: EAP:

+ finds good circuits - finds worse circuits
- slow + fast

We want:

+ finds good circuits

+ fast \

Build circuits from more fine-
grained components

Scale to big datasets / models
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Background

Edge pruning aims to find useful circuits efficiently by
using gradient descent to prune edges.
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Method

1. Build computational graph with disentangled residual stream
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[3] Bhaskar, Adithya, et al. "Finding transformer circuits with edge
pruning.” Advances in Neural Information Processing Systems 37 (2024):
18506-18534.
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Method

1. Build computational graph with disentangled residual stream

2. On edge j — i, associate a parameter z;;, so that the
node at the end of the edge takes value

Vi = fi 2 ziyj + (1= ;)7

jupstreamof i

[3] Bhaskar, Adithya, et al. "Finding transformer circuits with edge
pruning.” Advances in Neural Information Processing Systems 37 (2024):
18506-18534.
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Method

1. Build computational graph with disentangled residual stream

2. On edge j — i, associate a parameter z;;, so that the
node at the end of the edge takes value

Vi = fi 2 ziyj + (1 - 2;)7;

/ jupstreamof i/ \

layer i output of node | counterfactual output
of node |

[3] Bhaskar, Adithya, et al. "Finding transformer circuits with edge
pruning.” Advances in Neural Information Processing Systems 37 (2024):
18506-18534.
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Method

1. Build computational graph with disentangled residual stream

2. On edge j — i, associate a parameter z;;, so that the
node at the end of the edge takes value

vi = fi ( 2 zjiyj + (1 - Zji)371'>
/ j upstream of i/ \
layer i output of node | counterfactual output

of node |

3. Learn z;; by gradient descent, minimising: *

L =Ly + Lsparsity

* Some details omitted for clarity (see section on Details of the Edge Pruning process in the paper)
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Method

1. Build computational graph with disentangled residual stream

2. On edge j — i, associate a parameter z;;, so that the
node at the end of the edge takes value

vi = fi ( 2 zjiyj + (1 - Zji)371'>
/ j upstream of i/ \
layer i output of node | counterfactual output

of node |

3. Learn z;; by gradient descent, minimising: *

L =Ly, + Lsparsity

AN

change in outputs Sparsity constraint on z
compared to full network

* Some details omitted for clarity (see section on Details of the Edge Pruning process in the paper)
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Method

1. Build computational graph with disentangled residual stream

2. On edge j — i, associate a parameter z;;, so that the
node at the end of the edge takes value

Vi = [i ( 2 zjiy; + (1 - Zji)f’j)

jupstreamof i

3. Learn z;; by gradient descent, minimising: *

L =Lk, + Lsparsity

* Some details omitted for clarity (see section on Details of the Edge Pruning process in the paper)

UNIVERSITY OF

CAMBRIDGE




Method

1. Build computational graph with disentangled residual stream

2. On edge j — i, associate a parameter z;;, so that the
node at the end of the edge takes value

Vi = [i ( 2 zjiy; + (1 - Zji)f’j)

jupstreamof i

3. Learn z;; by gradient descent, minimising: *
L =Lk, + Lsparsity

4. Round each z;;

* Some details omitted for clarity (see section on Details of the Edge Pruning process in the paper)
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Method

1. Build computational graph with disentangled residual stream

2. On edge j — i, associate a parameter z;;, so that the
node at the end of the edge takes value

Vi = fi 2 ziyj + (1= ;)7

jupstreamof i

3. Learn z;; by gradient descent, minimising: *
L =Lk, + Lsparsity

4. Round each z;;

Similar to previous pruning methods [4] but using edges for granularity

[4] Louizos, Christos, Max Welling, and Diederik P. Kingma. "Learning sparse
neural networks through $ L_0 $ regularization." arXiv preprint
arXiv:1712.01312 (2017).
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Results

Circuit performance:

A ACDC EAP V¥ Edge Pruning
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(a) IOI-t1 (10I, 1 template)

Friends Juana and Kristi found a mango at
the bar. Kristi gave it to — Juana

[5] Wang, Kevin, et al. "Interpretability in the wild: a circuit for indirect object
identification in gpt-2 small." arXiv preprint arXiv:2211.00593 (2022).
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Results

Circuit performance:

A ACDC EAP V¥ Edge Pruning
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Edge Sparsity (%)

(a) IOI-t1 (10I, 1 template)

Friends Juana and Kristi found a mango at
the bar. Kristi gave it to — Juana

Performs better than ACDC and EAP on
experiments presented

[5] Wang, Kevin, et al. "Interpretability in the wild: a circuit for indirect object
identification in gpt-2 small." arXiv preprint arXiv:2211.00593 (2022).
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Results

Efficiency:
200 examples 400 examples 100K examples
Method Sparsity (%) T
KL]| Time(s)] KL| Time(s)] KL| Time(s)|
ACDC 96.6 £ 0.1 0.92 18,783 0.88 40,759 - -
EAP 96.6 £ 0.1 3.47 21 3.66 43 3.78 12,260
Edge Pruning 96.6 + 0.1 0.25 2,756 0.22 2,931 0.20 3,042

[3] Bhaskar, Adithya, et al. "Finding transformer circuits with edge
pruning.” Advances in Neural Information Processing Systems 37 (2024):

18506-18534.
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Results

Efficiency:
200 examples 400 examples 100K examples
Method Sparsity (%) T
KL]| Time(s)] KL| Time(s)] KL| Time(s)|
ACDC 96.6 + 0.1 0.92 18,783  0.88 40,759 - -
EAP 96.6 £+ 0.1 3.47 21 3.66 43 3.78 12,260
Edge Pruning 96.6 + 0.1 0.25 2,756 0.22 2,931 0.20 3,042
Much faster than ACDC Faster than EAP for
in all tests large datasets

[3] Bhaskar, Adithya, et al. "Finding transformer circuits with edge
pruning.” Advances in Neural Information Processing Systems 37 (2024):
18506-18534.
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Summary of contributions

Goal: edge pruning aims to find useful circuits
efficiently by using gradient descent to prune edges
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Summary of contributions

Explicitly optimises circuit
performance (unlike EAP)

/

Goal: edge pruning aims to find useful circuits
efficiently by using gradient descent to prune edges

|

Performs gradient descent to
evaluate all edges in parallel
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Summary of contributions

Explicitly optimises circuit
performance (unlike EAP)

/

Goal: edge pruning aims to find useful circuits
efficiently by using gradient descent to prune edges

|

Performs gradient descent to
evaluate all edges in parallel

- Results suggest improved upon previous works
- Further analysis on circuits found, to indicate that they are interpretable [6]

[6] Makelov, Aleksandar, Georg Lange, and Neel Nanda. "Is this the subspace
you are looking for? an interpretability illusion for subspace activation
patching." arXiv preprint arXiv:2311.17030 (2023).
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Limitations

- Does not prune individual weights

- Lack of ablation of the hyperparameters e.g. mask initialisation strategy
- Little comparison with channel pruning [7], which is very similar

- No comparison to manually identified circuits for the same problems.

- Requires a lot of of memory: 32 H100s

- No discussion on why KL divergence loss is used rather than logit

difference (log P(correct) — log P(misleading)), when previous methods
they cited used logit difference

[7] He, Yihui, Xiangyu Zhang, and Jian Sun. "Channel pruning for accelerating
very deep neural networks." Proceedings of the IEEE international conference
on computer vision. 2017.
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Questions?
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Details of the Edge Pruning process  Ouwr formulation of pruning is based on that wsed by CoFi
Pruning [Xia et al., 2022]. Specifically, we model the masks = based on the hard concrete distribution
as done by Louizos et al. [2018]:

u ~ Uniformie, 1 —¢)

1 u
s=a|—=- + log o
(.:I“ l—u )

s=sx(r—1)+1

% = min(1, max((,8))

where o refers to the sigmoid function, ¢ = 1075, and log ax indicates that the logarithm is applied
element-wise. We fix the temperature & = 3. The last two lines stretch the distribution to [I,r] =

[—0.1,1.1] and accumulate the “excess” probability on either side to () and 1, respectively. The log
alphas log o are the learnable parameters in this formulation.

Following, Wang et al. [2020)], a target sparsity is enforced via a Lagrangian term [Louizos et al.,

2018]. If the current sparsity is s, the term, parametrized by a reference value ¢ is
.E_.i_}-['l::f—.*.-:]ﬂ'.-:\g-[f—.\'_:lz

A1 and A; are also updated during training via gradient ascent to keep the regularization tight. We
vary the value of # throughout training, linearly increasing it from () to a target value, as outlined

in Appendix A. Although it may be wseful to think of { as a “target™ sparsity, it is only a number.

The runs usually converge to a value slightly below £, so it is prudent to set it to a value greater than
l—although s can then never reach the target value, it will be pushed to higher sparsities.

We have two sets of masks z. The first set associates a () — 1 value z. with each edge € = (1,12} in
the computational graph. The second set tags each nade of the graph n with a 0 — 1 value =,. The
latter specifies whether a node is “active”, i.e., producing output. In effect, the presence of an edge
£ = (ny,nz) is determined by the binary mask

‘:l:n..rl:; = :[ﬂ..:la;:l X :FI|

We initially only used edge masks but found that the method would have difficulty converging to
high sparsities {i.e., end up at low sparsities). Introducing a second set of masks allows the process to
eliminate many edges quickly, accelerating the removal of unimportant components. However, the
lagrangian above only applies to the edge masks. This is fine since the node masks can only remove
further edges, not introduce new ones on top of those chosen by the edge masks. The final loss is

L=LCLg + Eudgu..i

Transform z to encourage
z € {0,1}

Details of the sparsity loss

Apply masks to both the
edges and the nodes to
achieve better sparsity
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