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Overview



Background

We already saw ACDC:

 1. Build a dataset of a specific behaviour

 2. Overwrite the value of an edge in the computational graph

 3. If the output doesn’t change, then remove the edge from our circuit

 4. Repeat until we have checked all edges

[1] Conmy, Arthur, et al. "Towards automated circuit discovery for mechanistic 

interpretability." Advances in Neural Information Processing Systems 36 

(2023): 16318-16352.
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Edge Attribution Patching (EAP) linearly approximates activation 

patching by using gradients to assign importance to each edge.

[2] Syed, Aaquib, Can Rager, and Arthur Conmy. "Attribution patching 

outperforms automated circuit discovery." arXiv preprint 

arXiv:2310.10348 (2023).
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+ finds good circuits

- slow

EAP:

- finds worse circuits

+ fast

We want:

 + finds good circuits

 + fast

Scale to big datasets / models

Build circuits from more fine-

grained components



Background

Edge pruning aims to find useful circuits efficiently by 

using gradient descent to prune edges.



Method

1. Build computational graph with disentangled residual stream

[3] Bhaskar, Adithya, et al. "Finding transformer circuits with edge 

pruning." Advances in Neural Information Processing Systems 37 (2024): 

18506-18534.
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[3] Bhaskar, Adithya, et al. "Finding transformer circuits with edge 

pruning." Advances in Neural Information Processing Systems 37 (2024): 

18506-18534.
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3. Learn 𝑧𝑗𝑖 by gradient descent, minimising: 

ℒ = ℒ𝐾𝐿 + ℒ𝑠𝑝𝑎𝑟𝑠𝑖𝑡𝑦

Similar to previous pruning methods [4] but using edges for granularity

*

4. Round each 𝑧𝑗𝑖

[4] Louizos, Christos, Max Welling, and Diederik P. Kingma. "Learning sparse 

neural networks through $ L_0 $ regularization." arXiv preprint 

arXiv:1712.01312 (2017).



Results

Circuit performance:

Friends Juana and Kristi found a mango at 

the bar. Kristi gave it to → Juana
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identification in gpt-2 small." arXiv preprint arXiv:2211.00593 (2022).



Results

Circuit performance:

Friends Juana and Kristi found a mango at 

the bar. Kristi gave it to → Juana

Performs better than ACDC and EAP on 

experiments presented

[5] Wang, Kevin, et al. "Interpretability in the wild: a circuit for indirect object 

identification in gpt-2 small." arXiv preprint arXiv:2211.00593 (2022).
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Results
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Much faster than ACDC 

in all tests

Faster than EAP for 

large datasets

[3] Bhaskar, Adithya, et al. "Finding transformer circuits with edge 

pruning." Advances in Neural Information Processing Systems 37 (2024): 

18506-18534.
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Goal: edge pruning aims to find useful circuits 

efficiently by using gradient descent to prune edges

Explicitly optimises circuit 

performance (unlike EAP)

- Results suggest improved upon previous works

- Further analysis on circuits found, to indicate that they are interpretable [6]

[6] Makelov, Aleksandar, Georg Lange, and Neel Nanda. "Is this the subspace 

you are looking for? an interpretability illusion for subspace activation 

patching." arXiv preprint arXiv:2311.17030 (2023).



Limitations

- Does not prune individual weights

 - Lack of ablation of the hyperparameters e.g. mask initialisation strategy

 - Little comparison with channel pruning [7], which is very similar

 - No comparison to manually identified circuits for the same problems.

 - Requires a lot of of memory: 32 H100s

 - No discussion on why KL divergence loss is used rather than logit 

difference (log 𝑃(𝑐𝑜𝑟𝑟𝑒𝑐𝑡)  −  log 𝑃(𝑚𝑖𝑠𝑙𝑒𝑎𝑑𝑖𝑛𝑔)), when previous methods 

they cited used logit difference

[7] He, Yihui, Xiangyu Zhang, and Jian Sun. "Channel pruning for accelerating 

very deep neural networks." Proceedings of the IEEE international conference 

on computer vision. 2017.



Questions?



Transform 𝑧 to encourage 

𝑧 ∈ {0,1}

Details of the sparsity loss

Apply masks to both the 

edges and the nodes to 

achieve better sparsity
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