Finding Transformer Circuits with Edge Pruning

Adithya Bhaskar, Alexander Wettig, Dan Friedman, Dangi Chen

L193 Explainable Artificial Intelligence

Overview

LEGEND XAl

. Local Explanations ‘_

. Global Explanations \

@ Model-Agnostic Method Mechanistic
Interpretability

& Model-Specific Method I
A4 v A4 ¥ v Y 4 A4 v
l A
v v
v 4 4 ¥ 4 v A4 v y
D@ D) G L D@ © D@ D@ L
L) (C L L L) G L L) (G L
= Neuron Activation
(L L L) G L LG .
L L L) (G L LG

=% UNIVERSITY OF

» CAMBRIDGE

Background

We already saw ACDC:

1. Build a dataset of a specific behaviour

2. Overwrite the value of an edge in the computational graph

3. If the output doesn’t change, then remove the edge from our circuit
4. Repeat until we have checked all edges

[1] Conmy, Arthur, et al. "Towards automated circuit discovery for mechanistic
interpretability.” Advances in Neural Information Processing Systems 36
(2023): 16318-16352.

=% UNIVERSITY OF

> CAMBRIDGE

Background

We already saw ACDC:

1. Build a dataset of a specific behaviour

2. Overwrite the value of an edge in the computational graph

3. If the output doesn’t change, then remove the edge from our circuit

4. Repeat until we have checked all edges

Edge Attribution Patching (EAP) linearly approximates activation
patching by using gradients to assign importance to each edge.

[2] Syed, Aaquib, Can Rager, and Arthur Conmy. "Attribution patching
outperforms automated circuit discovery." arXiv preprint
arXiv:2310.10348 (2023).

=% UNIVERSITY OF

%8> CAMBRIDGE

Background

ACDC: EAP:
+ finds good circuits - finds worse circuits
- slow + fast

=% UNIVERSITY OF

s8> CAMBRIDGE

Background

ACDC:

+ finds good circuits
- slow

We want:;

+ finds good circuits
+ fast

=% UNIVERSITY OF

s8> CAMBRIDGE

EAP:
- finds worse circuits
+ fast

Background

ACDC: EAP:

+ finds good circuits - finds worse circuits
- slow + fast

We want:

+ finds good circuits

+ fast

Scale to big datasets / models

=% UNIVERSITY OF

“§ CAMBRIDGE

Background

ACDC: EAP:

+ finds good circuits - finds worse circuits
- slow + fast

We want:

+ finds good circuits

+ fast \

Build circuits from more fine-
grained components

Scale to big datasets / models

=% UNIVERSITY OF

“§ CAMBRIDGE

Background

Edge pruning aims to find useful circuits efficiently by
using gradient descent to prune edges.

=% UNIVERSITY OF

“§ CAMBRIDGE

Method

1. Build computational graph with disentangled residual stream

(LM head) (LMhead)

e
]

MLP

(T

F
Learnahble
P'il"la'l'}' masks

E
L/
"_-*:Ql
.-—..}--1‘ E
- —p| =
| —
"
D
ol
L_w: -

[3] Bhaskar, Adithya, et al. "Finding transformer circuits with edge
pruning.” Advances in Neural Information Processing Systems 37 (2024):
18506-18534.

=Bz UNIVERSITY OF

» CAMBRIDGE

Method

1. Build computational graph with disentangled residual stream

2. On edge j — i, associate a parameter z;;, so that the
node at the end of the edge takes value

Vi = fi 2 ziyj + (1= ;)7

jupstreamof i

[3] Bhaskar, Adithya, et al. "Finding transformer circuits with edge
pruning.” Advances in Neural Information Processing Systems 37 (2024):
18506-18534.

=% UNIVERSITY OF

> CAMBRIDGE

Method

1. Build computational graph with disentangled residual stream

2. On edge j — i, associate a parameter z;;, so that the
node at the end of the edge takes value

Vi = fi 2 ziyj + (1 - 2;)7;

/ jupstreamof i/ \

layer i output of node | counterfactual output
of node |

[3] Bhaskar, Adithya, et al. "Finding transformer circuits with edge
pruning.” Advances in Neural Information Processing Systems 37 (2024):
18506-18534.

=% UNIVERSITY OF

> CAMBRIDGE

Method

1. Build computational graph with disentangled residual stream

2. On edge j — i, associate a parameter z;;, so that the
node at the end of the edge takes value

vi = fi (2 zjiyj + (1 - Zji)371'>
/ j upstream of i/ \
layer i output of node | counterfactual output

of node |

3. Learn z;; by gradient descent, minimising: *

L =Ly + Lsparsity

* Some details omitted for clarity (see section on Details of the Edge Pruning process in the paper)

=% UNIVERSITY OF

=8> CAMBRIDGE

Method

1. Build computational graph with disentangled residual stream

2. On edge j — i, associate a parameter z;;, so that the
node at the end of the edge takes value

vi = fi (2 zjiyj + (1 - Zji)371'>
/ j upstream of i/ \
layer i output of node | counterfactual output

of node |

3. Learn z;; by gradient descent, minimising: *

L =Ly, + Lsparsity

AN

change in outputs Sparsity constraint on z
compared to full network

* Some details omitted for clarity (see section on Details of the Edge Pruning process in the paper)

=% UNIVERSITY OF

=8> CAMBRIDGE

Method

1. Build computational graph with disentangled residual stream

2. On edge j — i, associate a parameter z;;, so that the
node at the end of the edge takes value

Vi = [i (2 zjiy; + (1 - Zji)f’j)

jupstreamof i

3. Learn z;; by gradient descent, minimising: *

L =Lk, + Lsparsity

* Some details omitted for clarity (see section on Details of the Edge Pruning process in the paper)

UNIVERSITY OF

CAMBRIDGE

Method

1. Build computational graph with disentangled residual stream

2. On edge j — i, associate a parameter z;;, so that the
node at the end of the edge takes value

Vi = [i (2 zjiy; + (1 - Zji)f’j)

jupstreamof i

3. Learn z;; by gradient descent, minimising: *
L =Lk, + Lsparsity

4. Round each z;;

* Some details omitted for clarity (see section on Details of the Edge Pruning process in the paper)

UNIVERSITY OF

CAMBRIDGE

Method

1. Build computational graph with disentangled residual stream

2. On edge j — i, associate a parameter z;;, so that the
node at the end of the edge takes value

Vi = fi 2 ziyj + (1= ;)7

jupstreamof i

3. Learn z;; by gradient descent, minimising: *
L =Lk, + Lsparsity

4. Round each z;;

Similar to previous pruning methods [4] but using edges for granularity

[4] Louizos, Christos, Max Welling, and Diederik P. Kingma. "Learning sparse
neural networks through $ L_0 $ regularization." arXiv preprint
arXiv:1712.01312 (2017).

=% UNIVERSITY OF

> CAMBRIDGE

Results

Circuit performance:

A ACDC EAP V¥ Edge Pruning

w

A
At = v

Y]
0y
y.c a M
/ 03 Ay iy¥ y¥r Y
/01
e
/

LS

87 ©75 OF ©5AS 99{,/‘9‘9.5

[

KL (Model || Circuit)

il -
' » v y
A a4 ¥ ATV A.n.v[nu vy vy -

[=]

93 94 95 96 a7 98 99
Edge Sparsity (%)

(a) IOI-t1 (10I, 1 template)

Friends Juana and Kristi found a mango at
the bar. Kristi gave it to — Juana

[5] Wang, Kevin, et al. "Interpretability in the wild: a circuit for indirect object
identification in gpt-2 small." arXiv preprint arXiv:2211.00593 (2022).

gz UNIVERSITY OF

CAMBRIDGE

Results

Circuit performance:

A ACDC EAP V¥ Edge Pruning

)
a3
g e
ol /ns e = v
3’ /03 av wv vy
- / .
@) .
2, 97 975 98 %as 93 -fas
j A o phbb Lol
% A 4 ¥ A TR 1_‘11[". Y VIYYY 1

93 94 95 96 a7 98 99

Edge Sparsity (%)

(a) IOI-t1 (10I, 1 template)

Friends Juana and Kristi found a mango at
the bar. Kristi gave it to — Juana

Performs better than ACDC and EAP on
experiments presented

[5] Wang, Kevin, et al. "Interpretability in the wild: a circuit for indirect object
identification in gpt-2 small." arXiv preprint arXiv:2211.00593 (2022).

UNIVERSITY OF

CAMBRIDGE

Results

Efficiency:
200 examples 400 examples 100K examples
Method Sparsity (%) T
KL]| Time(s)] KL| Time(s)] KL| Time(s)|
ACDC 96.6 £ 0.1 0.92 18,783 0.88 40,759 - -
EAP 96.6 £ 0.1 3.47 21 3.66 43 3.78 12,260
Edge Pruning 96.6 + 0.1 0.25 2,756 0.22 2,931 0.20 3,042

[3] Bhaskar, Adithya, et al. "Finding transformer circuits with edge
pruning.” Advances in Neural Information Processing Systems 37 (2024):

18506-18534.

gz UNIVERSITY OF

CAMBRIDGE

Results

Efficiency:
200 examples 400 examples 100K examples
Method Sparsity (%) T
KL]| Time(s)] KL| Time(s)] KL| Time(s)|
ACDC 96.6 + 0.1 0.92 18,783 0.88 40,759 - -
EAP 96.6 £+ 0.1 3.47 21 3.66 43 3.78 12,260
Edge Pruning 96.6 + 0.1 0.25 2,756 0.22 2,931 0.20 3,042
Much faster than ACDC Faster than EAP for
in all tests large datasets

[3] Bhaskar, Adithya, et al. "Finding transformer circuits with edge
pruning.” Advances in Neural Information Processing Systems 37 (2024):
18506-18534.

gz UNIVERSITY OF

CAMBRIDGE

Summary of contributions

Goal: edge pruning aims to find useful circuits
efficiently by using gradient descent to prune edges

=% UNIVERSITY OF

“§ CAMBRIDGE

Summary of contributions

Explicitly optimises circuit
performance (unlike EAP)

/

Goal: edge pruning aims to find useful circuits
efficiently by using gradient descent to prune edges

|

Performs gradient descent to
evaluate all edges in parallel

=% UNIVERSITY OF

“§ CAMBRIDGE

Summary of contributions

Explicitly optimises circuit
performance (unlike EAP)

/

Goal: edge pruning aims to find useful circuits
efficiently by using gradient descent to prune edges

|

Performs gradient descent to
evaluate all edges in parallel

- Results suggest improved upon previous works
- Further analysis on circuits found, to indicate that they are interpretable [6]

[6] Makelov, Aleksandar, Georg Lange, and Neel Nanda. "Is this the subspace
you are looking for? an interpretability illusion for subspace activation
patching." arXiv preprint arXiv:2311.17030 (2023).

=% UNIVERSITY OF

> CAMBRIDGE

Limitations

- Does not prune individual weights

- Lack of ablation of the hyperparameters e.g. mask initialisation strategy
- Little comparison with channel pruning [7], which is very similar

- No comparison to manually identified circuits for the same problems.

- Requires a lot of of memory: 32 H100s

- No discussion on why KL divergence loss is used rather than logit

difference (log P(correct) — log P(misleading)), when previous methods
they cited used logit difference

[7] He, Yihui, Xiangyu Zhang, and Jian Sun. "Channel pruning for accelerating
very deep neural networks." Proceedings of the IEEE international conference
on computer vision. 2017.

=% UNIVERSITY OF

> CAMBRIDGE

Questions?

UNIVERSITY OF

CAMBRIDGE

Details of the Edge Pruning process Ouwr formulation of pruning is based on that wsed by CoFi
Pruning [Xia et al., 2022]. Specifically, we model the masks = based on the hard concrete distribution
as done by Louizos et al. [2018]:

u ~ Uniformie, 1 —¢)

1 u
s=a|—=- + log o
(.:I“ l—u)

s=sx(r—1)+1

% = min(1, max((,8))

where o refers to the sigmoid function, ¢ = 1075, and log ax indicates that the logarithm is applied
element-wise. We fix the temperature & = 3. The last two lines stretch the distribution to [I,r] =

[—0.1,1.1] and accumulate the “excess” probability on either side to () and 1, respectively. The log
alphas log o are the learnable parameters in this formulation.

Following, Wang et al. [2020)], a target sparsity is enforced via a Lagrangian term [Louizos et al.,

2018]. If the current sparsity is s, the term, parametrized by a reference value ¢ is
.E_.i_}-['l::f—.*.-:]ﬂ'.-:\g-[f—.\'_:lz

A1 and A; are also updated during training via gradient ascent to keep the regularization tight. We
vary the value of # throughout training, linearly increasing it from () to a target value, as outlined

in Appendix A. Although it may be wseful to think of { as a “target™ sparsity, it is only a number.

The runs usually converge to a value slightly below £, so it is prudent to set it to a value greater than
l—although s can then never reach the target value, it will be pushed to higher sparsities.

We have two sets of masks z. The first set associates a () — 1 value z. with each edge € = (1,12} in
the computational graph. The second set tags each nade of the graph n with a 0 — 1 value =,. The
latter specifies whether a node is “active”, i.e., producing output. In effect, the presence of an edge
£ = (ny,nz) is determined by the binary mask

‘:l:n..rl:; = :[ﬂ..:la;:l X :FI|

We initially only used edge masks but found that the method would have difficulty converging to
high sparsities {i.e., end up at low sparsities). Introducing a second set of masks allows the process to
eliminate many edges quickly, accelerating the removal of unimportant components. However, the
lagrangian above only applies to the edge masks. This is fine since the node masks can only remove
further edges, not introduce new ones on top of those chosen by the edge masks. The final loss is

L=LCLg + Eudgu..i

Transform z to encourage
z € {0,1}

Details of the sparsity loss

Apply masks to both the
edges and the nodes to
achieve better sparsity

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

