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Large Language Model as Blackbox?

The internal computation of LLM remains opagque and poorly understood.
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Large Language Model as Blackbox? Haystack!

The internal computation of LLM remains opagque and poorly understood.
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Mechanistic Interpretability (Ml): Background

The study of reverse-engineering neural networks to explain the behavior of ML models
In terms of their internal components.
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Neuron and Feature Correspondence: Challenge

LLM as feature extractor — neurons represent different properties from raw input

« |deally, Monosemantic Neuron: one neuron correspond to one feature

 However, Superposition: when represent more features than neurons - Polysemantic
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(a) A monosemantic French neuron
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Case Studies with Sparse Probing

Understand how high-level human-interpretable features are represented within the
Internal neuron activation of LLMs

« To what extent does neuron-feature correspondence transfer to full scale LLM?
« What kind of features do or do not appear in superposition?

« How do we reliably find and verify (neuron, feature) pairs in the wild?

Contributing to the full-model interpretability of LLM!
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Sparse Probing: Methodology

Probing: train a linear classifier on the internal activation to predict a property of the input
» Tokenized text dataset (activation) + labeled dataset for a subset of tokens (feature)

« Train a binary classifier to minimize classification loss for each layer of the network

Sparse Probing: identify certain neuron(s) associated with the feature
« k-sparse probe: train a classifier with at most k non-zero coefficient (neurons)

« Find the top k predictive neuron subset for the classifier: ranking problem

 Methods: adaptive thresholding, optimal sparse probing (OSP), class means of each
neuron, mutual info between each neuron and label...

« Particularly well suited to study superposition!
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Apply Sparse Probing in LLM

Apply sparse probing at the MLP layers immediately after elementwise nonlinearity

 MLP layer perform the majority of feature extractions, form a privileged basis [1]
0 _ (1) ., (5 (1—1)
a®) = o(Wi y(hy )

Cautiously design probe dataset: appropriate positive/negative samples, multi-token property

Experiment Details
* Model: EleutherAl’s Pythia suite [2], 7 models ranging from 70M to 6.9B

« Data: 100 binary features across wide range: language, programming language, part-of-speech...

e Evaluation Metrics: F1 score, Precision, Recall
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Case Study 1. Compound Word Neurons

Hypothesis: early layer neurons “de-tokenize” raw token into more useful compound abstraction

« Motivation: token vocab is an unnatural way for linguistic processing — e.g. compound word

« Pseudo-vocab (all common n-grams) is pretty large, perfect candidate for superposition

Result: polysemantic neurons, but highlight true feature via linear combinations

Activation distribution of 70M.L1.N111 by token colored by prefix

Superposition of social-security feature across neurons of same layer bigram
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(b) Example of superposition in representing the compound word “social security.”




Case Study 2: Context Neurons

Hypothesis: context feature might be represented monosemantically
« High-level descriptions of most tokens (is_french) is important and worth a full neuron

« High-level property may not be mutually exclusive, hard to represent in superposition

Result: highly specialized context neuron in middle layer, appear to be monosemantic
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Case Study 3: Effect of Scale
How does sparsity (k) of feature changes with different model scale?
Train a series of probes sweeping the value of k from 256 to 1 using adaptive thresholding

* Report maximum F1 score for each k, each model size, and each feature collection

Result: Two dynamics—quantization model of scaling [3] and neuron splitting [4]
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Case Study 4: Interpretation of Classification Performance

1. (layer, feature) pair has low 1-sparse accuracy and high k-sparse accuracy

* Ambiguity between superposition (intersection) or composition (union) of neurons

2. Further analyze an individual neuron via the full input and output logits:

Top athlete neurons in Pythia-6.9B

g 8 athlete sport . : striker stolen HP yard Quebec PF
g ~  mmm soccer - - - - header un pinch Pass Canadian Lon

6 " : z . 0 kick ielder Runnin adi ET
2 I basketball ) ' e 9 P
- . : midfielder walked yard gary NBA
5 4 I baseball ) . . = = :
p football i o . . ) : i F loan batting struck WR Winnipeg perimeter
2 2] o : .o _— . : 2 . - aird hitting stolen DE Montreal rebounds
§ mmm hockey T ‘ i I = keeper HP hitting punt onto gets
[ s s s T T e S B P e T B P B T e B e e 2 T2 Lo ottenham = handed handed coordinator Ottawa guard
P attacking  pinch NL touchdown Edmonton shooting
g_ 21 4 -~ -+ Palace struck batting rushing Calgary Bron
x = - - . : : = : L - T transfer inning pitched | receiver oil icans
g —4 7 ’ ) o . ’ -+ = T Swan plate inning blocking Maple averaging

L19.N10761 L19.N549 L20.N13139 L20.N10306 L20.N2367 L19.N3520 N10761 N549 N13139 N10306 N2367 N3520

(a) Neurons which activate for the names of specific types of athletes (left) turn out be more general sport neurons when analyzing
the top per-token average activations (right).




Case Study 4: Interpretation of Classification Performance

1. (layer, feature) pair has low 1-sparse accuracy and high k-sparse accuracy

* Ambiguity between superposition (intersection) or composition (union) of neurons

2. Further analyze an individual neuron via the full input and output logits:
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(b) End of sentence neurons: analyzing the effect on the output vocabulary can corroborate and refine neuron interpretations. For
token heatmaps (right), the columns correspond to capital tokens with max increased logits, capital tokens with max decrease, and

lowercase tokens with max increase, respectively.




Case Study 4: Interpretation of Classification Performance

1. (layer, feature) pair has low 1-sparse accuracy and high k-sparse accuracy

* Ambiguity between superposition (intersection) or composition (union) of neurons
2. Further analyze an individual neuron via the full input and output logits
3. Inspectthe precision (false positive) and recall (false negative) of a feature

« High precision, low recall: neuron represents a more specific feature than the feature in probe

« Low precision, high recall: neuron represents a more general feature than the feature in probe
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Case Studies with Sparse Probing

Strength
* Quickly and precisely localize neurons
« Address drawbacks from previous methods

« Well-suited for studying superposition

» Clearest evidence of superposition,
monosemantic/polysemantic neurons

« Generalize to larger-scale models
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: Discussion

Weakness

Require detailed analysis on probing results
Highly sensitive to errors in probing dataset
Cannot explain features/neurons across layers
Based on empirical findings

Largest model studied is 6.9B (GPT4: 1.7T [5])

CAMBRIDGE



Case Studies with Sparse Probing: Discussion

Future Directions — so many!
« Areas: superposition, output prediction, neuron analysis, neuron splitting

« Applications: xAl (Mechanistic Interpretability), Al Ethics, Al Safety, specialized LLM

Citation: 140
« Extends sparse probing to analyze GPT-4 (done by OpenAl obviously) [6]

Space and time features learned by LLM [7]
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Circuit analysis across multiple layers [8]
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My Final Thought

After “Case Studies with Sparse Probing”, the haystack is...
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My Final Thought

After “Case Studies with Sparse Probing”, the haystack is still the haystack!
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