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1Tishby, Pereira, and Bialek, The Information Bottleneck Method.
2Krizhevsky, Sutskever, and Hinton, “ImageNet Classification with Deep Convolutional Neural Networks”.
3Goyal et al., Explaining Classifiers with Causal Concept Effect (CaCE).
4Koh et al., “Concept Bottleneck Models”.
5Yeh et al., “On Completeness-aware Concept-Based Explanations in Deep Neural Networks”.
6Havasi, Parbhoo, and Doshi-Velez, “Addressing Leakage in Concept Bottleneck Models”.
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Concept bottleneck models (CBMs)7 recap
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Figure 1: A diagram of a CBM. Given a dataset
D = {x, c, y} with inputs x ∈ Rd, K binary
concepts c ∈ {0, 1}K, and output labels y ∈ N, a
concept predictor θ and label φ can be trained.

Hard CBMs
• Label predictor takes binary concept
values

• Concept and label predictors trained
separately on ground truth

Soft CBMs
• Label predictor takes real concept
probabilities

• Can be trained independently,
sequentially, or jointly

7Koh et al., “Concept Bottleneck Models”.
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Where does this fit in?

Figure 2: The CBM approach within the taxonomy of explainable AI, from the lecture slides8.

8Jamnik, Shams, and Zarlenga, “Explainable Artificial Intelligence (L193), Lecture 1, Lent 2025”.
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Leakage

• “The label predictor learns to utilize the additional, unintended information in the
soft concept probabilities output by the concept predictor”9

• Learnt during sequential or joint training of soft CBMs
• Need to be able to “see” input values xi during training of φ

• Damages both interpretability and interventions
1. Label explanation no longer wholly based on concept values
2. Intervening on a concept may not result in correct labelling

9Havasi, Parbhoo, and Doshi-Velez, “Addressing Leakage in Concept Bottleneck Models”, §2, Leakage.
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Motivation

Trade-off between accuracy and leakage

• Hard CBMs have no leakage, but are less accurate
• Soft CBMs have better accuracy, but leakage damages interpretability and
interventions

• Can we get the best of both worlds?
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Key idea

Two key factors cause the disparity between the accuracy of
hard and soft CBMs

1. The Markovian assumption
2. The expressivity of concept predictors

Inherent to CBMs, but side-stepped by soft approaches leaking information – at a cost...
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The Markovian assumption

Hard CBMs assume that the concepts capture enough
information about the input to label the output

• If not enough concepts, this may not be true!
• Cannot distinguish between cats and dogs if the only concepts are having fur and having
a tail...

• More formally, there is no mutual information shared between y and x given c,
written as I(y; x|c) = 0
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Addressing the Markovian assumption
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Figure 3: A diagram of a CBM with a side-channel.
Introduce L unknown concepts z ∈ {0, 1}L, which
can capture required information about x not in
the existing concepts c. γ is a learnt function to
infer z to c

• Consolidate leakage into separate
unknown concepts

• Training similar to hard CBM, but
modified to estimate gradients for
unknown concepts

• Completeness score I(y;c)
I(y;c,x) estimates

what fraction of the required
information is present in c

• If the label must be fully explained, use
γ to predict z from c
⇒ Intuition: leakage only during training!
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The expressivity of concept predictors

All CBMs assume independence of concepts, so cannot
capture correlations between them

• Trivial example of failure case is mutually exclusive concepts
• Labelling an animal reported as having both toes and hooves is meaningless...
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Addressing the expressivity of concept predictors

θInput
(x) φ

Concepts
(c)

Output
(y)

c1

c2

c3

Figure 4: A diagram of a CBM with an
auto-regressive architecture.

• To predict the ith concept, use not only
the input x, but also the already
predicted concepts c1:i1

• In Figure 4, c2 depends on c1 and c3
depends on both c1 and c2

• Allows correlations between concepts
to be captured

• Again, training similar to hard CBM, but
more involved modification required

• Relegated to the paper’s appendix...
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Evaluation i

Figure 5: Label accuracy after intervening on
subset of concepta.

aHavasi, Parbhoo, and Doshi-Velez, “Addressing Leakage in Concept
Bottleneck Models”, Figure 2.

• Tested for both prediction (MIMIC-III
EWS) and classification (Caltech-UCSD
Birds) tasks

• Both side-channel and auto-regressive
approach close gap in accuracy
between hard and soft CBMs, but do not
damage interventions

• Figure 5 shows accuracy scaling well
with interventions for both datasets

• Figure 6 shows side-channel closing
accuracy gap

• Significant increase to computation cost
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Evaluation ii

Figure 6: The predictive performance of soft joint
CBMs and hard CBMsa.

aHavasi, Parbhoo, and Doshi-Velez, “Addressing Leakage in Concept
Bottleneck Models”, Figure 3a.

• Tested for both prediction (MIMIC-III
EWS) and classification (Caltech-UCSD
Birds) tasks

• Both side-channel and auto-regressive
approach close gap in accuracy
between hard and soft CBMs, but do not
damage interventions

• Figure 5 shows accuracy scaling well
with interventions for both datasets

• Figure 6 shows side-channel closing
accuracy gap

• Significant increase to computation cost
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Summary

Get the best of both worlds between hard and soft CBM
accuracy and interpretability

⇒ Leakage damages interpretability and interventions in soft CBMs
⇒ Hard CBMs have two causes for accuracy shortcomings
⇒ Using a side-channel and auto-regressive architecture can fix these issues
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Critique

Strengths:

+ Approach follows clear train of logic, identifying and addressing issues
+ Strong motivation, supported by empirical measurement
+ Neat trick using γ function to leak only during training
+ Open source code10 strengthens argument and replicability

Weaknesses:

− Side-channel consolidates uninterpretable leakage rather than removing it, with a
solution left for future work11

− Significant and variable computational cost (from 1.6× to 11×) may impact scalability

10Actionable Knowledge (DtAK) Lab, Dtak/Addressing-Leakage.
11Angluin, “Proof Techniques”.
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Impact and future work

• Commonly cited (74 citations) as related work on concept embedding models by
eminent researchers...12

• Few papers directly building on the approach
• Critique/future work of side-channels being difficult to interpret is supported by
“Benchmarking and Enhancing Disentanglement in Concept-Residual Models”13

12Zarlenga et al., “Learning to Receive Help”.
13Zabounidis et al., Benchmarking and Enhancing Disentanglement in Concept-Residual Models.
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