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Context

• Networks can learn efficient encodings, using hidden
variables to distinguish state

• Human-interpretable concepts are organically
represented by the hidden units of DNNs [2]

• Ongoing research to encourage disentangled repr. [4]
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Questions

1. How can a disentangled representation be quantified?
2. Do interpretable units represent special alignment of
feature space?

3. What training conditions lead to disentangled
representations?
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Approach

• Network Dissection: a framework for quantifying the
interpretability of latent representations in CNNs

• Broden: a dataset of visual semantic concepts
• Evaluates alignment between hidden units and a set of
semantic concepts to quantify their interpretability

• Investigate AlexNet, VGG, GoogLeNet and ResNet
• Experiment with axis rotation, different datasets and
training techniques
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Taxonomy
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Related work

There existed tools for interpreting CNNs in 2017, but none
quantitative.

• Deconvolution: sampling image patches to maximise
activations [9]

• Back-propagation: creating saliency maps [8]
• Visualising activations and receptive fields for concepts [6]

Other related work includes training linear probes for
intermediate layers [1] and generating prototypical images
from feature inversion mapping [7].
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Network Dissection
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Annotated dataset

• Broadly and densely (Broden) annotated dataset
• Totalling 63,305 images and 1,197 visual concepts
• Each pixel can have multiple labels
• Labels have at least 10 image samples

7



Intersection over union (IoU) score

• Given Ak(x), determine Tk s.t. P(ak > Tk) = 0.005
• Scale Ak(x) using bilinear interpolation to Sk(x)
• Threshold to binary classification Mk(x) ≡ Sk(x) ≥ Tk
• Equation 1 defines accuracy of unit k in detecting c

IoUk,c =
∑

|Mk(x) ∩ Lc(x)|∑
|Mk(x) ∪ Lc(x)|

(1)
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Ts and Cs

• Computed only on the images that contain a concept of
the category of c

• It does not measure discriminative power
• Unit is a detector of c if IoUk,c > 0.04
• Choose label with highest score in case of multiple
• Measures alignment between a single unit and concept
• Quantify a layer by summing over its unique detectors
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Experiment: human evaluation

• Some number of Amazon Mechanical Turk workers
• 15 images with highlighted patches of high activations
• AlexNet trained on Places205
• Asked if a given phrase describes most of the patches
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Experiment: axis rotation

• Same model and dataset as before
• Apply rotation matrix to the model output
• Discriminative power remains constant
• Reduced # unique detectors by 80%
• Implies special alignment of feature space
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Experiment: model and dataset

• # layers ∝ # unique detectors ∝ IoU
• Difference in # scenes
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Experiment: regularisation

• NoDropout: remove random dropout from FC layers
• BatchNorm: add batch norm. to all conv. layers
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Experiment: fine-tuning (extended paper)

• Change a unit’s concept to a visually similar one
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Conclusion

1. How can a disentangled representation be quantified?
Using the IoU score of the Network Dissection framework

2. Do interpretable units represent special alignment of
feature space? Yes, interpretability is not
axis-independent

3. What training conditions lead to disentangled
representations? Findings:

• Interpretability ∝ model depth
• Discriminative power 6∝ interpretability
• BatchNorm reduces interpretability
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Review

Positive

• Supports any CNN and does not require back-propagation
• Provide code and data (fittingly) under MIT License
• Website1 with results, visualisations and videos
• Released an optimised library a year later

Negative

• 94% of dataset made up by < 1% of classes
• A threshold accuracy of 4% is very low
• Use reference numbers as nouns in related work
• No future work section
• Human evaluation: only 15 images and ? participants

1netdissect.csail.mit.edu 16

netdissect.csail.mit.edu


Impact

• First method to quantify the interpretability of CNNs
• 1800+ citations and 440+ stars on GitHub
• Broden dataset widely used: Net2Vec [5]
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Future work

• Followed up with a paper on Understanding the Role of
Individual Units in a Deep Network [3]

• Increase the dataset of 1,197 visual concepts, as many units
unidentified

• Enable batch normalisation to preserve interpretability
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Experiment: training duration

• # unique detectors increases with training
• Good proxy for validation accuracy (extended paper)
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