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Background — Saliency Maps

input features (e.g. pixels) matter the most for a given prediction
-

4 )
Al models can be ‘black boxes’ and saliency maps try to highlight which
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\

)
Examples include Gradients, Grad-CAM, Integrated Gradients, Guided
Backprop...
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Relying solely on visual appeal (the ‘map’) can be misleading
-
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Background - Saliency Maps vs. Edge Detection

4 N
Some saliency methods (e.g. Guided Backprop) look
very similar to classical edge detectors

: ‘
Edge detectors require no training data or labels

- J

4 N
Visual similarity could be misleading if map is just
highlighting edges
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Background - Saliency Maps vs. Edge Detection

Integrated Gradient

Original Guided Guided Integrated Gradients ® Edge
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Do saliency methods reflect model-data relationships,
or do they just highlight superficial cues (like edges)?




Approach

4 )

Model Parameter Randomisation Test

\- J
4 )

Data Randomisation Test

\\§ 4
4 N\
Gradient, SmoothGrad, Guided BackProp, Guided GradCAM, Integrated Gradients, IGSG, Gradient
© Input
\\§ 4
4 N\
Inception v3 (ImageNet), CNNs on MNIST/Fashion-MNIST, MLP
\\§ 4

>
Visual inspection, Spearman rank correlation (with/without absolute values), Structural Similarity
Index (SSIM) and Histogram of Gradients (HOG) similarity

.
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Model Parameter Randomisation Tests

Randomise model weights (top layer — bottom layer)
Cascading vs. Independent
Generate saliency maps after each randomisation step




Model Parameter Randomisation Tests - Cascading

Cascading randomization
. from top to bottom layers
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Model Parameter Randomisation Tests - Cascading

MLP - MNIST

CNN - Fashion MNIST

Inception v3 - Imagenet
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Model Parameter Randomisation Tests - Independent

Independent ‘layer’ randomization

c
Original Image 'g :
s . 2 % § 8% @9
Q . ﬂ| '-| nl :J :|
d . e & & & 3 & & & 3 8 g ¥ & & q -
£ T ¥ 3§ ¥ ¥ ¥ § ¥ 3} ¥ 3§ § § ¥ § 3
2% £ g £ =2 £ £ 2 2 g8 1 & & & & & ¢t
o * =2 E E E E E E E E E E E 8 o o o ]
) ")‘ = 3% oy o n :‘ N w0y = % -, . 4\’ . :
Gradient i & :
“
‘ »
SmoothGrad &% = % 2 Y e
> 2 > v 2 ¢ i 5 o ' 5 -
Gradieni - Input
Guided F Tl =l = - = e AL I A il A oo il
Back-propagation x " Wi, r ' X it Té )

GradCAM ‘Iwr; ."’ .n j. ‘l.‘“ | ““' -

Guided GradCAM

Integrated Gradients . - PN ok ; A i

Integrated Gradients-SG % © - % o0 B




Data Randomisation Test

4 )

Shuffle training labels

-
/

AN

Train a new model to fit random labels

-
/
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Compare saliency maps from correctly-labelled model to

\randomly-labelled model )
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Data Randomisation Test

CNN - MNIST
Absolute-Value Visualization
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Key Findings

4 )
Saliency methods differ in sensitivity, some strongly reflect the learned parameters

and data labels while others appear nearly unchanged when the model or labels are
randomised
-
/

AN

Visual similarity # True explanation

NG
/

AN

Simple checks (randomisation tests) can reveal if a method genuinely depends on
training
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Key Findings

-

‘Architecture as a Prior’ — design of neural network can
embed biases about how data should be processed

~

.
-

Element-wise input () gradient (or similar approaches)
can display the input’s outline even if gradient i1s random

)
~
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Name, Description and Main Explanation Types

References

CORRECTNESS (Section 6.1)

Model Parameter Randomization Check - Feature importance, Heatmap, Localization
Randomly perturb the internals of the predictive model and check that the explanation changes.

Explanation Randomization Check - Feature importance, Heatmap
Randomly perturb the explanation (which is built into the predictive model) and check that the
output of the predictive model changes.

White Box Check - Feature importance, Decision Rules, White-box model, Localization
Apply the explanation method to an interpretable white box model and check the correspondence
of the explanation with the white box reasoning.

Controlled Synthetic Data Check

Feature importance, Heatmap, Prototypes, Localization, White-box model, Graph

Controlled experiment: Create a synthetic dataset such that the predictive model should follow
a particular reasoning, known a priori (important: checking this assumption by e.g. reporting
almost-perfect accuracy). Evaluate whether the explanation shows the same reasoning as the
data generation process.

Single Deletion - Feature importance, Heatmap
Delete, mask or perturb a single feature in the input and evaluate the change in output of the
predictive model. Measure correlation with explanation’s importance score.

Incremental Deletion (or Incremental Addition) - Feature importance, Heatmap

One by one delete (or perturb) or add features to the input, based on explanation’s order, and
measure for each new input the change in output of the predictive model. Report average change
in log-odds score, AUC, steepness of curve or number of features needed for a different decision.
Compare with random ranking or other baselines.

(3, 154, 224, 247, 301]

(177, 247]

[58, 121, 124, 144, 216, 219,
326)

[9, 19, 44, 52, 77, 191, 233,
234, 236, 316, 316]

277, 288, 295, 300, 301)

OUTPUT-COMPLETENESS (Section 6.2)

Preservation Check - Feature importance, Heatmap, Localization, Text, Prototypes
Giving the explanation (or data based on the explanation) as input to the predictive model should
result in the same decision as for the original, full input sample.

Deletion Check - Feature importance, Heatmap, Localization

Giving input without explanation’s relevant features should result in a different decision by the
predictive model than the decision for the original, full input sample.

Fidelity

Feature importance, Heatmap, Decision Rules, Decision Tree, Prototypes, Text, Localization, White-
box model

Measure the agreement between the output of the predictive model and the explanation when
applied to the same input sample(s).

Predictive Performance

Feature importance, Heatmap, Decision Rules, Decision Tree, Prototypes, White-box model
Predictive performance of the interpretable model or predictive explanation with respect to the
ground-truth data.

[23, 36, 42, 63, 92, 93, 128,
54, 166, 224, 285,

[63, 140, 154, 167, 209, 224]

[12, 15, 38, 44, 58, 61, 121,
128, 144, 151, 161, 202, 203,
205, 218, 264, 272, 292-294,
306, 316, 322, 326)

(12, 44, 58, 82, 97, 134, 145,
157 07, 208, 218, 220,
: , 292, 300, 306, 316,

319) ia.

CONSISTENCY (Section 6.3)

Implementation Invariance - Feature Importance

Evaluate whether the explanation method is invariant to specific implementations of the predic-
tive model by validating whether two implementations that give the same output for an input,
also get the same explanation.

(72, 267]

https://arxiv.org/pdf/2201.08164
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Table 3. Continued

Name, Description and Main Explanation Types

References

CONTINUITY (Section 6.4)

Stability for Slight Variations

Feature importance, Heatmap, Graph, Text, Localization, Decision Rules, White-box model
Measure the similarity between explanations for two slightly different samples. Small variations
in the input, for which the model response is nearly identical, should not lead to large changes in
the explanation.

Fidelity for Slight Variations — Decision Rules, White-box model

Measure the agreement between interpretable predictions for original and slightly different
samples: an explanation for original input x should accurately predict the model’s output for a
slightly different sample x”.

Connectedness — Prototypes, Representation Synthesis

Measure how connected a counterfactual explanation is to samples in the training data: ideally, the
counterfactual is not an outlier, and there is a continuous path between a generated counterfactual
and a training sample.

[9, 29,33, 56,

144,153, 15 207, 212,

245, 256, 263, 273, 301)

[144, 206]

[127, 149, 201]

CONTRASTIVITY (Section 6.5)

Target Sensitivity - Heatmap
The explanation for a particular target or model output (e.g. class) should be different from an
explanation for another target.

Target Discriminativeness — Disentanglement, Representation Synthesis, Text
The explanation should be target-discriminative such that another model can predict the right
target (e.g. class label) from the explanation, in either a supervised or unsupervised fashion.

Data Randomization Check - Feature importance, Heatmap, Localization

Randomly change labels in a copy of the training dataset, train a model on this randomized dataset
and check that the explanations for this model on a test set are different from the explanations
for the model trained on the original training data.

[188, 209, 247, 253, 277,
281]

[32, 75, 120, 137, 246, 272,
275, 288, 295)

[3, 154, 224)

COVARIATE COMPLEXITY (Section 6.6)

Covariate Homogeneity

Prototypes, Di: gl t, Localization, Heatmap, Representation Synthesis

Evaluate how consistently a covariate (i.e. feature) in an explanation represents a predefined
human-interpretable concept.

Covariate Regularity - Decision Rules, Feature Importance
Evaluate the regularity of an explanation by measuring its Shannon entropy, in order to quantify
how noisy the explanation is and how easy it is to memorize the explanation.

[4, 24, 26, 69, 73, 75, 80, 94,
111, 129, 146, 162, 183, 239,
240, 246, 255, 265, 291, 303,
313, 315, 321, 323]

[267, 306]

COMPACTNESS (Section 6.7)

Size

Feature importance, Heatmap, Decision Rules, Decision Tree, Prototypes, Text, Graph, Localization,
White-box model, Representation Synthesis

Total size (absolute) or sparsity (relative) of the explanation.

Redundancy - Feature importance, Decision Rules, Text, White-box model
Calculate the redundancy or overlap between parts of the explanation.

Counterfactual Compactness - Prototypes, Representation Synthesis, Text
Given a counterfactual explanation showing what needs to be changed in the input in order to
change the prediction of the predictive model, measure how much needs to be changed.

[8, 35, 38, 58, 61, 82, 115,
130, 131, 136, 143, 145, 153
177, 205-210, 218-22
23 , 259, 26!

283,28
314,319)

[145, 151, 266]

[8, 88, 127, 130, 151, 20
262, 318]

https://arxiv.org/pdf/2201.08164




Positives

Highly quantitative
Seminal
Easy to replicate
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Negatives

-

.

Focus only on images

-

.

Not many architectures tested
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Future Work

4 )

Apply tests to other modalities

-
/

AN

Could combine with ablation or concept-based approaches
to investigate causality

-
/

AN

Test how saliency changes under partial label noise




