
Axiomatic Attribution for Deep Networks

L193 - Explainable Artificial Intelligence



Background

Research Question: How do we attribute the prediction of a DNN to its input features?

Some Applications:

• Object Recognition: which pixels are most responsible for the resulting label?

• Question Classification: which words signal what type of answer a question expects?

• Machine Translation: which input tokens do output tokens mostly correspond to?

Informative for both end-users and developers



Background

How do we formally define the attribution of an input feature?

Let 𝐹 represent a DNN and 𝑥 an input:

𝐹:𝑅𝑛 → [0, 1]
𝑥 = 𝑥1, … , 𝑥𝑛 ∈ 𝑅𝑛

Then attribution from a baseline 𝑥′ is aF(x, x
′) = 𝑎1, … , 𝑎𝑛 ∈ 𝑅𝑛 where 𝑎𝑖 is the contribution of 𝑥𝑖 to 𝐹(𝑥)

An intuitive choice of baseline should be an input where 𝐹 𝑥′ ≈ 0 and convey an absence of signal (e.g., 
black image)



Motivation

Challenges: 

1. Existing methods are hard to evaluate empirically – how to delineate model vs. attribution method 
misbehavior is not clear

2. Existing methods tend to require modifications to the network and/or are costly to compute

Objectives:

1. Define axioms that, when satisfied, addresses the issue of evaluation

2. Introduce a method that satisfy the axioms and is easy to compute/implement



Axioms

1. Sensitivity
a) For all pairs of 𝑥 and 𝑥′ that differ by one feature which results in different predictions, then the differing 

feature should have 𝑎𝑖 > 0

b) If 𝐹 does not mathematically depend on an 𝑥𝑖 then 𝑎𝑖 = 0

2. Implementation Invariance
a) Attributions should be the same for two functionally equivalent DNNs

3. Completeness
a) Attributions should add up to 𝐹 𝑥 − 𝐹(𝑥′)

b) This is a stronger version of Sensitivity (a)

4. Linearity

a) If 𝐺 = 𝑖 × 𝐹1 + 𝑗 × 𝐹2 then 𝑎𝐺 𝑥, 𝑥′ = 𝑖 × 𝑎𝐹1 𝑥, 𝑥′ + 𝑗 × 𝑎𝐹2(𝑥, 𝑥
′)



Axioms

Examples of violations of axioms:

1. Sensitivity
• Gradients – e.g., 𝐹 𝑥 = 1 − 𝑅𝑒𝐿𝑈(1 − 𝑥) fails with 𝑥′ = 0 and 𝑥 = 2

• Causes focus on irrelevant features

2. Implementation Invariance
• Methods that use “discrete” gradients (finite difference approx.) such as DeepLift and Layer-wise Relevance 

Propagation (LRP) as chain rule does not generally hold

• Undesirable that attributions can arbitrarily change even if the “black box” outputs are the same



Integrated Gradients

Motivation: Gradients satisfy Implementation Invariance, methods like DeepLift and LRP satisfy Sensitivity, 
can we combine?

Yes – integrate gradients on the line connecting 𝑥 and 𝑥′ in 𝑅𝑛. Formally:

𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑒𝑑𝐺𝑟𝑎𝑑𝑠𝑖 𝑥 ≔ 𝑥𝑖 − 𝑥𝑖
′ ×න

𝛼=0

1 𝜕𝐹(𝑥′ + 𝛼 × 𝑥 − 𝑥′ )

𝜕𝑥𝑖
𝑑𝛼



Integrated Gradients

Integrated Gradients satisfy:

• Completeness by the fundamental theorem of calculus for path integrals

෍

𝑖

𝑛

𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑒𝑑𝐺𝑟𝑎𝑑𝑠𝑖 𝑥 = 𝐹 𝑥 − 𝐹(𝑥′)

• Sensitivity (a) by Completeness

• Sensitivity (b) as if 𝐹(𝑥) does not depend on 𝑥𝑖 then 
𝜕𝐹

𝜕𝑥𝑖
= 0 for all values of 𝑥𝑖

• Implementation Invariance by only considering instantaneous gradients

• Linearity as differentiation obeys linearity

න
𝛼=0

1 𝜕[𝑎 × 𝐹1 … +𝑏 × 𝐹2 (… )]

𝜕𝑥𝑖
𝑑𝛼 = 𝑎න

𝛼=0

1 𝜕𝐹1 …

𝜕𝑥𝑖
𝑑𝛼 + 𝑏න

𝛼=0

1 𝜕𝐹2 …

𝜕𝑥𝑖
𝑑𝛼



Integrated Gradients

Integrated Gradients is a specific case of Path Methods:

𝑃𝑎𝑡ℎ𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑒𝑑𝐺𝑟𝑎𝑑𝑠𝑖
𝛾
𝑥 ≔ න

𝛼=0

1 𝜕𝐹(𝛾 𝛼 )

𝜕𝛾𝑖(𝛼)

𝜕𝛾𝑖(𝛼)

𝜕𝛼
𝑑𝛼

where 𝛾 is a smooth function from 0, 1 → 𝑅𝑛 specifying a path from 𝑥′ to 𝑥. Integrated Gradients is the case 
where 𝛾 𝛼 = 𝑥′ + 𝛼 × (𝑥 − 𝑥′).

All path methods satisfy Completeness, Sensitivity, Linearity, and Implementation Invariance. Integrated Gradients 
is the unique case that also preserves symmetry.



Integrated Gradients

Efficient calculation via Riemann approximation:

𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑒𝑑𝐺𝑟𝑎𝑑𝑠𝑖 𝑥 ≈ 𝑥𝑖 − 𝑥𝑖
′ ×෍

𝑘=1

𝑚
𝜕𝐹(𝑥′ +

𝑘
𝑚× 𝑥 − 𝑥′ )

𝜕𝑥𝑖
×
1

𝑚

Gradients can be easily obtained from most deep learning frameworks (e.g., tf.gradients in TensorFlow or 
torch.autograd.grad in PyTorch). 

Furthermore, 𝑚 can be easily tuned simply by comparing the Riemann sum to 𝐹 𝑥 − 𝐹(𝑥′) due to the 
Completeness axiom being satisfied.



Results



Future Work

Predictive Power:

• Integrated Gradients only provides attribution evaluated at a specific point

• It does not address how attribution values change, the only way to find the attribution for another point is 
to evaluate Integrated Gradients at the new point.

Input Feature Interactions:

• Attributions are specific to each feature; we do not know the importance of combinations of input 
features

Baselines:

• Newly released model architectures and different modalities might not have an obvious neutral baseline, 
finding them is an ongoing process


	Slide 1: Axiomatic Attribution for Deep Networks
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

