EXPLAINABLE ARTIFICIAL INTELLIGENCE

L193 – Student Presentations 4 – Lent 2025

PAPER TIME!

Are you ready for paper tiiiiimeeeeeee!

Does anyone know who this is?

Does anyone know who this is?

Alan Turing in a running competition (1947)!

In 1947, Alan Turing **tried out for the 1948 London Olympics UK marathon team**. After contracting fibrositis earlier that year, he still managed to finish 5th in the qualifying race with a time of **2 hours**, **46 minutes**, **and 3 seconds**.

How much faster (in minutes) was the time obtained by the 1948 Olympics men's marathon gold medalist?

In 1947, Alan Turing **tried out for the 1948 London Olympics UK marathon team**. After contracting fibrositis earlier that year, he still managed to finish 5th in the qualifying race with a time of **2 hours**, **46 minutes**, **and 3 seconds**.

How much faster (in minutes) was the time obtained by the 1948 Olympics men's marathon gold medalist?

Delfo Cabrera (Argentina)

Answer: 12 minutes, 39 seconds

Paper 1: Chen et al. "This looks like that: deep learning for interpretable image recognition." NeurIPS (2019).

Paper 2: Jain et al. "Attention is not explanation." NAACL (2019).

Paper 3: Wiegreffe et al. "Attention is not not explanation." EMNLP (2019).

PAPER RECAP

FINDING NEURONS IN A HAYSTACK (GURNEE ET AL., 2023)

Gurnee et al. "Finding neurons in a haystack: Case studies with sparse probing." TMLR (2023).

NEURONS IN A HAYSTACK: RESEARCH QUESTION

Main research Question

Are human-interpretable features captured by single neurons in LLMs or are they distributed across their latent space?

NEURONS IN A HAYSTACK : TAKEAWAYS

 Early-layer neurons rarely correspond to single, well-defined "concepts." Instead, they appear to be polysemantic!

(b) A polysemantic neuron activating on six unrelated n-grams

INTERVENABLE BLACK BOXES: TAKEAWAYS

2. Higher-level contextual concepts (e.g., language detectors) may be encoded by **monosemantic neurons in the middle layers**.

FINDING CIRCUITS WITH PRUNING (BHASKAR ET AL., 2024)

Bhaskar et al. "Finding transformer circuits with edge pruning." NeurIPS (2024).

CIRCUITS WITH PRUNING: RESEARCH QUESTION

Main research Question

How can automated circuit discovery be improved to be both efficient and scalable while remaining faithful to the model's predictions?

CIRCUITS WITH PRUNING: TAKEAWAYS

1. Instead of pruning neurons or components, **we can speed up circuit discovery by pruning edges** and framing circuit discovery as an **optimisation problem**!

CIRCUITS WITH PRUNING: TAKEAWAYS

2. We can use edge pruning to find **extremely sparse** circuits in very large LLMs (a few billion parameters) that can **faithfully recover/explain most of the model's performance**

Table 2: Edge pruning finds circuits with 0.03-0.04% of the edges in CodeLlama-13B that match the performance of the full model. The circuits perform well in cross-evaluation and overlap highly, hinting that the same mechanisms explain large parts of instruction-prompted and few-shot behavior.

Circuit	Num. edges \downarrow	Accuracy (%) ↑		Exact Match (%) ↑	
		Instr. prompted	Fewshot	Instr. prompted	Fewshot
Full model	3872820	82.00	89.25	100.00	100.00
Instruction prompt (IP)	1041	79.25	74.50	90.00	79.00
Fewshot (FS)	1464	75.75	87.25	84.50	91.25
$IP \cap FS$	653	72.50	68.25	79.75	72.50