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HE COMPLEXITY OF UNDERSTANDING @

Are <20 interactions sufficient to fully understand this ML model?

i

L . f yes, raise
“oi

Si . your hand!

= ML Model
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HE COMPLEXITY OF UNDERSTANDING

How many interactions do we need to fully understand the model?

ﬂ >>>‘.§.w
0 0

1
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HE COMPLEXITY OF UNDERSTANDING

How many interactions do we need to fully understand the model?

o
O“;\~ 0
1 0

1 reen light=1
0
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[}_> -@% l_’»ﬂw

ML Model

Ci € {0,1}
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HE COMPLEXITY OF UNDERSTANDING

How many interactions do we need to fully understand the model?

e >>>Qs.w
0 Ok 1 ambulance=1
1 0 0
1 1

P

L |

ML Model
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HE COMPLEXITY OF UNDERSTANDING

How many interactions do we need to fully understand the model?

We can recover the full Conditional Probability / Truth Table!

e >>>‘.§.w
O‘\ Ok - reen light=1, ambulance=1
1 0 0
0 1 1
1 1 1
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HE COMPLEXITY OF UNDERSTANDING

#interactions required to extract full CPT/TT
is exponential in #inputs!

Can we do better?




INFORMAL) OBJECTIVE

Build a general-purpose neural model that is:

d Expressive (as DNNs)

and whose inference mechanism is

A Functionally transparent (we fully understand CPT/TT)

d Tractable (CPT/TT size << exp)

d Semantically transparent (concept-based)

A Causally transparent (based on non-trivial cause-effect chains )
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https://arxiv.org/abs/2407.15527v1

PLAN

)+n(C)n(Bn

General methods (foundations)
Neural Interpretable Reasoning paradigm
Grounding NIR (Concept Memory Reasoning example)

Causal reasoning (metrics and models)
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METHODS

Functional transparency: understanding of inference mechanism is tractable

|CPT(f)| < exp(|Z])

Methods:
 Filter irrelevant features out



https://arxiv.org/abs/2407.15527v1

METHODS

Functional transparency: understanding of inference mechanism is tractable

[CPT(f)]| < exp(IZ])

Methods:
 Filter irrelevant features out
 Re-parametrize global CPT as a mixture of
simple (e.g., linear) “local CPTs"
Local CPT
Global CPT
NOT Z,
NOT Z; OR Z; = OR
Zi
@ §:©
Pk
G52


https://arxiv.org/abs/2407.15527v1

METHODS

Semantic transparency: input features are aligned with human semantics

Data
representation

Methods:
 Work with tabular data
 Use concept-based approach

.. and then write the model as P(Y | C)!

"pedestrian’
Human
concept C
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METHODS

General-purpose: model design should be applicable to any data type

“ l—b@ "brake”

=@
L3
sl
F4O)


https://arxiv.org/abs/2407.15527v1

METHODS

General-purpose: model design should be applicable to any data type

Interpretability is a Markovian property: Neighborhood of y

(YLX)IN,

Methods:
 Re-parametrize the inputs of an ML Introducing x does not affect

model f without affecting its the understanding of
interpretability (idea behind CBMs)!

P(YIX)=ZC:P(Y|C)P(C|X) 0
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SEMANTIC & FUNCTIONAL OPACIT

Semantic opacity: data representations are not aligned with human concepts

Semantic
p N transparency
General-purpose IE: P
H o[ ‘.,.
M ﬁ 1, é ‘\.;}b
Concept-based ﬂ |
learning L Voce
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SEMANTIC & FUNCTIONAL OPACIT

Semantic opacity: data representations are not aligned with human concepts

Vs

General-purpose

solution
Concept-based
learning

Semantic
N transparency
“ L/
oF Q:z’
<1, é "-';b

I

=

ML Model

Functional opacity: CPT is unknown or intractable to reconstruct

Vs

General-purpose

solution
Neural-symbolic
reasoning

N

(4
C;

Functional transparency

— >>>Qw.,%= NOT C; OR C,
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SEMANTIC & FUNCTIONAL OPACIT

Does semantic transparency imply functional transparency?

In theory it does, but...

.. with n inputs the size of a TT is 2™
— intractable!
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SEMANTIC & FUNCTIONAL OPACIT

Does functional transparency imply semantic transparency?

Potential solution: DeepProblog

_ Pre-defined
Unsupervised logic program
concepts 1
1 1

¢
N }—»»ﬁ.@ﬂ- NOT C, OR C,



https://arxiv.org/abs/1805.10872

FUNCTIONAL = SEMANTIC TRANSP.? @

Can we prove that the classification head is safe?

_ Pre-defined
Unsupervised logic program
concepts L
f 1
Cl ]
I.;[ ) }—»»ﬂw— NOT C; OR C, If yes, raise
2

your hand!
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FUNCTIONAL = SEMANTIC TRANSP.?

Can we prove that the classification head is safe? 0

Pre-defined
Unsupervised logic program

Safe!
concepts ‘
Cy
- &R - NOT(CL0R C;
2 Danger!
~ &5

Safety depends on concepts’ meaning!
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FUNCTIONAL = SEMANTIC TRANSP.?

Can we combine concept-based learning
with symbolic reasoning?




NEURAL INTERPRETABLE REASONING

Proposed Solution

Step 1: DNN generates both concept activations & rule parameters (neural generation)
Step 2: Symbolic engine executes the rule using concept activations (interpretable execution)

Interpretable
Concepts execution

ey @@ —l >>>ﬂ\‘\)3

exec

L» {NOT C, OR C,} -T

Set of logic rules / linear maps
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NEURAL INTERPRETABLE REASONING

Proposed Solution

P(YIX)=P(Y|C; VW })P(C,{W;}|X)

Semantic
transparen
p Y Interpretable

Concepts execution

—>|: :| _— @@ —l >>>‘0§.\\‘)3

exec

Interpretability is a
=—_Markov property

{ We can apply neural J

L’{NOT C10R Cy} '14 Functional J OF0  Opao

:4.(1: 2ty R “Tg®
transparency u_..""-j%ﬂ 36.:{ \-:.1:
eXf @

Set of logic rules / linear map

re-parametrization
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CONCEPT-BASED MEMORY REASONING

Proposed Solution

Step 1: DNN predicts concept activations

Concepts
sssss tic transparency

|'s_slog
» 1 -09
L‘ -01

®
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CONCEPT-BASED MEMORY REASONING

Proposed Solution

Step 2: DNN predicts embedding to be selected from the latent rulebook

Concepts
sssss tic transparency

|’s_slog
» 1 -09
L‘ -01

®
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CONCEPT-BASED MEMORY REASONING

Proposed Solution

Step 3: DNN decodes selected embedding into 3 states: positive, negative, irrelevant

Concepts
sssss tic transparency

|’s_slog
» 1 -09
L‘ -01

@ I @

5 o o — NOTC; AND C,

rrelevant 03 0 1 Logic rule / linear map
functional transparency

®
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CONCEPT-BASED MEMORY REASONING

Proposed Solution (details)

Step 4: Execute rule using rule states and concept activations

Concepts

) - 02
IV - 09
® -0

Rule states

NOT C, AND C,

CFAC
ey
8 50!

521


https://arxiv.org/abs/2407.15527v1

CONCEPT-BASED MEMORY REASONING

Proposed Solution (details)

Step 4: Execute rule using rule states and concept activations
Execution of rule states on concept activations

Concepts I[r; = positive]p(c; | x) + I[r; = negative]p( —c;| x) + I[r; = irrelevant]

) - 02
IV - 09
® -0

Rule states

NOT C, AND C,

®
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CONCEPT-BASED MEMORY REASONING

Proposed Solution (details)

Step 4: Execute rule using rule states and concept activations

Execution of rule states on concept activations

Concepts I[r; = positive]p(c; | x) + I[r; = negative]p( —c;| x) + I[r; = irrelevant]
%’[22 ﬁ Oxp(c; lx)+ 1xp(—cilx)+0=p(=¢lx)=(1-0.2)=0.8
® -0

Rule states

NOT C, AND C,

®
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CONCEPT-BASED MEMORY REASONING

Proposed Solution (details)

Step 4: Execute rule using rule states and concept activations

Execution of rule states on concept activations

Concepts I[r; = positive]p(c; | x) + I[r; = negative]p( —c;| x) + I[r; = irrelevant]
ﬁigj ﬁ OXp(c; | x) + 1xXp(=cil x)+0=p(=clx) =(1-0.2)=0.8
® o E Ixp(cilx)+0xp(—clx)+0=p(c;1x)=09

Rule states

NOT C, AND C,

®
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CONCEPT-BASED MEMORY REASONING

Proposed Solution (details)

Step 4: Execute rule using rule states and concept activations

Execution of rule states on concept activations

Concepts I[r; = positive]p(c; | x) + I[r; = negative]p( —c;| x) + I[r; = irrelevant]
ﬁigj ﬁ OXp(c; | x) + 1xXp(=cil x)+0=p(=clx) =(1-0.2)=0.8
® o E Ixp(cilx)+0xp(—clx)+0=p(c;1x)=09

‘ Oxp(c; lx)+0xp(—¢lx)+1=1

Rule states

NOT C, AND C,
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CONCEPT-BASED MEMORY REASONING

Proposed Solution

Step 5: Execute the rule combining concept states and activations to predict the
output label

Concepts

semantic transparency Inte rpr etable

|—°i I -2 execution @

'I\ﬂ 209 (1 -0.2)x0.9x%x1 _'»‘0@.\\33 =0.72
® -0

& IL @
Positive 01 1 0

» — NOT C; AND C,

1

p(rls)
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—p Negative 0.6 0
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CONCEPT-BASED MEMORY REASONING

CMR has 3 key features:

- Universal approximator akin to opague DNNs (Theorem 4.1)

,_
B

Memory of rules

c3%0%/\ ﬁo

Mixture of linear models
where the mixing coeff. are
parametrized by the selector

' 527
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CONCEPT-BASED MEMORY REASONING

CMR has 3 key features:

- Universal approximator akin to opague DNNs (Theorem 4.1)

« Minimize #relevant concepts — understanding is tractable

,_
B

Memory of rules

_—> %/\ ﬁO
Inference mechanisms can
only be selected from a finite

set of transparent rules!
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CONCEPT-BASED MEMORY REASONING

CMR has 3 key features:
- Universal approximator akin to opague DNNs (Theorem 4.1)
« Minimize #relevant concepts — understanding is tractable

. The concept memory allows formal verification of properties

"Does a property hold no matter which rule is selected?”

rover
memory + selection Memory of rules + if O then ¢ h Yes \/
Given theory T and formula ¢, compute T E
prover
V& l o Y + it then 20 mamm—p No X
Modelchecking Theorem proving  SAT solving @ E:!@
S Tl
(VMM ET =M E @) Tre=TkEg@ SATFrA-@)=THe 3 \-p'.:':
oTEg v 25
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INFORMAL) OBJECTIVE

Build a general-purpose neural model that is:

- Pr )
™ Expressive (as DNNs) = ),ﬁ LN
d

LR S
#0, = 250,
J «(,0+C0, £
- 5 7
~ \ N
£ 1 ¢
\ 2 N
| : 3
a
QD J Ak

and whose inference mechanism is

™M Functionally transparent (we fully understand CPT/TT)

& Tractable (CPT/TT size << exp)

&' Semantically transparent (concept-based)

A Causally transparent (based on non-trivial cause-effect chains )
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COMPARING BOTTLENECKS @

CBM #1 CBM #2 ﬁw
..... ..... If yes, raise
accelerate accelerate your hand!

s CBM #1 more causally transparent than CBM #27
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CAUSAL OPACITY

- Causal reliability: discover causal mechanisms of the data generating process

Data generating

# mechanism

hit gas
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CAUSAL OPACITY

- Causal reliability: discover causal mechanisms of the data generating process

- Causal opacity: discover causal mechanism of a model's inference process

....................
......
. L]
. L4
. ]
. L4
. .
. L4
. .

Data generating

71' mechanism }}

hit gas accelerate

-

P .
“, PS4
a, [3e
-----
........
---------------

. concept

task

CBM #1 is potentially equally
transparent w.rt. CBM #2!
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MEASURING CAUSAL EFFECTS

CBMs can answer association queries (duh...)

oy
|

ML Model Association |

What if the model sees a green light?
P(brake | light)
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MEASURING CAUSAL EFFECTS

Sometimes intervening on wrongly predicted concepts helps

Intervenel %

ok w =
\10

\33
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MEASURING CAUSAL EFFECTS

Sometimes intervening on wrongly predicted concepts helps..

and sometimes it doesn't! &

Causal analysis can provide us with insights!




MEASURING CAUSAL EFFECTS

Can we measure the causal influence of a
concept on the task?




o8
CAUSAL CONCEPT EFFEC £AEir
Alfard
Proposed Solution
Step 1: Compute expected value of the task with do(c; = 1)
:
Ralll — "o  E[brake | do(light =1)] = 0.2 nieaveliion |
VL Mode What if | set the light color to red?
| &b P(brake | do(light))

Association |

What if the model sees a green light?
P(brake | light)

538
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CAUSAL CONCEPT EFFEC

Proposed Solution

Step 2: Compute expected value of the task with do(c; = 0)

Y
B+ P e

E[ brake | do(light =1)] = 0.2

1
A4
&
SISIS
)

A
»

— Il %,  E[brake | do(light = 0)] = 1

ML Model

B P 1

R
i

p |

:.

OR@
S
i)
1{O]

Intervention

What if | set the light color to red?
P(brake | do(light))

Association

What if the model sees a green light?

P(brake | light)
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Ol740
CAUSAL CONCEPT EFFEC i

Proposed Solution

Step 3: Compute difference of expected values: absolute value is proportional to causal effect

CaCE = E[ brake | do(light = 1) | — E[ brake | do(light = 0) ] = —0.8

Y
B+ P e

E[ brake | do(light = 1)] = 0.2 Intervention |

What if | set the light color to red?
P(brake | do(light))

el Ak Association |
e -/
yiy . .&: — R [E[ brake | dO(ll ht = 0) ] —1 What if the model sees a green light?
d ML Model : .» g N - P(brake | llght)
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CAUSAL CONCEPT EFFEC £

Proposed Solution

Step 3: Compute difference of expected values: absolute value is proportional to causal effect

Sy | Eid
i ﬁ N
l' F _’.Ié | E[ brake | do(cowboy = 1)] = 0.5 Intervention |
ML Model - What if | set the light color to red?
covvboy 1 _&_ P(brake | do(light))
k4 Association |
ﬂ What if the model sees a i
oo, _ _ green light?
d ML Model e Q‘» ]E[brake | dO(COWbOy - 0)] - 05 P(brake | light)
&% | %
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CAUSAL CONCEPT EFFEC

Proposed Solution

@
1@

ks,

Wi”

Step 3: Compute difference of expected values: absolute value is proportional to causal effect

CaCE =

AAA4
G
SIS

@c(-l;li,lzii-

A4
&
SISIS

B [P pr

E[ brake | do(cowboy =1)] —

y—
e
«%% »
— A — o
ML Model

E[ brake | do(cowboy = 1)] =

E[ brake | do(cowboy = 0) | =

E[ brake | do(cowboy = 0) ]| =

1

Intervention

What if | set the light color to red?

P(brake | do(light))

Association

What if the model sees a green light?

P(brake | light)
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COUNTERFACTUAL CBMS

Limitation Being Addressed

CBMs cannot answer counterfactual queries!

@FN@ @
o -;..,; ) jgf,
%f:i_ @1" .

ICLR25 ICML22

What would have been predicted in
the same circumstance had a car
crash be seen?

P(brake | light, crash)

Intervention |

What if | set the light color to red?
P(brake | do(light))

Association |

What if the model sees a green light?

P(brake | light)
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COUNTERFACTUAL [CBMS Ao @s‘-%

ICLR25 ICML22

Proposed Solution

Step 1: Generate counterfactual concept activations

What would have been predicted in
the same circumstance had a car
B crash be seen?

A
=k
SININ

P(brake | light, crash)

Intervention |

What if | set the light color to red?
P(brake | do(light))

B P |

A
&%
SIS

o Association |
Qj. v _ A
Counterfactual What if the model sees a green light?
concepts & P(brake | light)
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COUNTERFACTUAL CBMS gﬁ% C;*)f’,

ICLR25 ICML22

Proposed Solution

Step 2: Compute causal effect on the task!

What would have been predicted in
the same circumstance had a car
crash be seen?

P(brake | light, crash)

O
10
3
(@]
(]
=
n

A
&%
SININ

Intervention |

What if | set the light color to red?
P(brake | do(light))

B P |

A
&%
SIS

ﬂ] Association |
Counterfactual What if the model sees a green light?
concepts & P(brake | light)
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DIRECT COUNTERFACTUAL DEPENDENCE

So far, we have been making 2 strong assumptions..




DIRECT COUNTERFACTUAL DEPENDENCE

So far, we have been making 2 strong assumptions:

- Concepts are mutually independent

not increase the likelihood of

Intervening on “car crash” does
hitting the brakes!

[/
[/
\ [/

'l ld

:
=

547




DIRECT COUNTERFACTUAL DEPENDENCE

So far, we have been making 2 strong assumptions:

- Concepts are mutually independent - Concepts are direct causes of the task
Intervening on “car crash” does Intervening on “car crash’
not increase the likelihood of directly causes the car to
hitting the brakes! brake!
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CONCEPT GRAPH MODELS

Proposed Solution

Enforce inference through a concept graph!

A
©00
SN

- @’tﬂ@
4 e

S8 O

ICLR25 ClLeaR24
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https://arxiv.org/abs/2405.16507
https://arxiv.org/abs/2401.08534

CONCEPT GRAPH MODELS

Proposed Solution

The concept graph can be:
- Given as a prior

OO @5|[££
1, "‘?
@5 ﬂ:’

ICLR25 ClLeaR24
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CONCEPT GRAPH MODELS

Proposed Solution

The concept graph can be:
- Given as a prior
- Extracted from data with causal discovery techniques

¥
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CONCEPT GRAPH MODELS

Proposed Solution

The concept graph can be:
- Given as a prior

- Extracted from data with causal discovery techniques
- Obtained with differentiable DAG learning

=%

- _'[ }_’&T = 14’“ @%jg

y K
) minZL @;'
DAG ICLR25 CleaR24
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NEURAL INTERPRETABLE REASONING

Build a general-purpose neural model that is:

™ Expressive (as DNNs)

\ K =\ V.3
| ’ e \ (@
0.1 | :&L_, : Znst
il +CalC N
> 10> 250,008
M = 0.046765 T -
3 W) e
) +n(C)n(BNC) gl 1 4, = 2H
CH +0,« 250,
J I s o \ ¢l »
602 NE Y g * C,04C0,
9769 lc! H 8
- - - N
k2 ® [ . ¥ o N
°
®

ge 4 @)/ K
M Semantically transparent (concept-based)
& Functionally transparent (we fully understand CPT/TT)
&M Tractable (CPT/TT size << exp)
& Causally transparent (based on non-trivial cause-effect chains )

and whose inference mechanism is
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