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WHERE TO GO NEXT?

404



INFLUENCE 
FUNCTIONS



• Feature/concept importance vs training point importance

• How can we do this?
• Re-train the model with 

each training point removed
• Approximating the effects of removal

of a training point using influence functions (IF)

INFLUENCE FUNCTIONS: MOTIVATION

407



INFLUENCE FUNCTION: FORMULATION I

Result dating back to 1982 [1]: Influence of up-weighting 𝑥 on the 
parameters 𝜃 can be calculated using the inverse Hessian:

Second derivative measures (curvature)

408

𝐼up,params 𝑥 ≝  ฬ𝑑𝜃𝜖,𝑥
𝑑𝜖 𝜖=0

=  −H𝜃
−1∇𝜃𝐿(𝑥, መ𝜃)

[1] Cook, R. D. and Weisberg, S. Residuals and influence in regression. New York: Chapman and Hall, 1982. 



INFLUENCE FUNCTION: FORMULATION II

መ𝜃 = arg min𝜃∈Θ
1
𝑛

 σ𝑖=1
𝑛 𝐿(𝑥𝑖, 𝜃)  
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Impact of removal of a training point
What we want

Up-weighting 𝑥 by a small 𝜖:

 መ𝜃𝜖,𝑥 = arg min𝜃∈Θ (1
𝑛

 σ𝑖=1
𝑛 𝐿 𝑥𝑖, 𝜃 ) + 𝜖𝐿(𝑥, 𝜃)  

IF: impact of up-weighting a training point
What we know

𝐼up,params 𝑥 ≝  ฬ𝑑𝜃𝜖,𝑥
𝑑𝜖 𝜖=0

=  −H𝜃
−1∇𝜃𝐿(𝑥, መ𝜃)

What value of 𝜖 mimics removal of 𝑥 ?

Koh, Pang Wei, and Percy Liang. "Understanding black-box predictions via influence functions." International conference on machine learning. PMLR, 2017.



INFLUENCE FUNCTION: FORMULATION II

መ𝜃 = arg min𝜃∈Θ
1
𝑛

 σ𝑖=1
𝑛 𝐿(𝑥𝑖, 𝜃)  
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Impact of removal of a training point
What we want

Up-weighting 𝑥 by a small 𝜖:

 መ𝜃𝜖,𝑥 = arg min𝜃∈Θ (1
𝑛

 σ𝑖=1
𝑛 𝐿 𝑥𝑖, 𝜃 ) + 𝜖𝐿(𝑥, 𝜃)  

IF: impact of up-weighting a training point
What we know

Impact of 𝒙 removal through influence function     
መ𝜃−𝑥 − መ𝜃 = −

1
𝑛  𝐼up,params 𝑥

Koh, Pang Wei, and Percy Liang. "Understanding black-box predictions via influence functions." International conference on machine learning. PMLR, 2017.

𝐼up,params 𝑥 ≝  ฬ𝑑𝜃𝜖,𝑥
𝑑𝜖 𝜖=0

=  −H𝜃
−1∇𝜃𝐿(𝑥, መ𝜃)



INFLUENCE FUNCTION: COMPUTATION II I

We can calculate the impact of up-weighting/removing a training point on the 
model parameters, but what’s the impact on loss at a certain test point?
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Impact of up−weightging 
𝑥 on model parameters

𝐼up,params 𝑥 ≝ อ
𝑑 መ𝜃𝜖,𝑥

𝑑𝜖
𝜖=0

= −H𝜃
−1∇𝜃𝐿(𝑥, መ𝜃)

Impact of up−weightging 𝑥
on loss at test point 𝑥𝑡𝑒𝑠𝑡

𝐼up,loss 𝑥, 𝑥𝑡𝑒𝑠𝑡 ≝ ฬ𝑑𝐿 𝑥𝑡𝑒𝑠𝑡,𝜃𝜖,𝑥
𝑑𝜖 𝜖=0

 

 = ∇𝜃𝐿 𝑥𝑡𝑒𝑠𝑡, መ𝜃 T  อ
𝑑 መ𝜃𝜖,𝑥

𝑑𝜖
𝜖=0

                                = − ∇𝜃𝐿 𝑥𝑡𝑒𝑠𝑡, መ𝜃 TH𝜃
−1∇𝜃𝐿(𝑥, መ𝜃)

                                                      



INFLUENCE FUNCTIONS: APPLICATION

415

Test Image Superficial patterns 
picked by SVM

Distinctive pattern 
of clownfish picked 
by Inception

Important Examples for 
Test Image Prediction

Image adapted from: Koh, Pang Wei, and Percy Liang. "Understanding black-box predictions via influence functions." International conference on machine learning. PMLR, 2017.



APPLICATIONS TO LLMS
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• The sequence of words that an LLM focused on the most when replying to 
a query: essentially example-based explanation 

• Inverse Hessian operation is prohibitively expensive for models with large 
number of parameters

• Efficient approximation of the inverse Hessian to allow IFs 
to be applied to LLMs with billions of parameters



APPLICATIONS TO LLMS: GENERALISATION 
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Do more parametric models learn more general and sophisticated patterns?

810 Million Parameters Model

Influences are concentrated on 
sequences that have  overlapping 
tokens (keywords such as continue 
existing, as long as, I understand) 
with the query but not much 
semantically related.

52 Billion Parameters Model

Influences are concentrated on 
more abstractly related sequences 
that mention topics of survival 
instincts and interactions with AI 
systems.

Experiment extract from: Grosse, Roger, et al. "Studying large language model generalization with influence functions."arXiv preprint arXiv:2308.03296 (2023).



APPLICATIONS TO LLMS : LOCALISE INFLUENCE

421

Proposition of a method that allows the influence of a data point to be 
attributed to specific layers → decomposition of IF across layers

Simple factual queries

Experiment extract from: Grosse, Roger, et al. "Studying large language model generalization with influence functions." arXiv preprint arXiv:2308.03296 (2023).

Columns: top 500 influential 
sequences for the query

Rows: layer-wise influence 

Colours: Darker red shows 
higher attribution
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Simple factual queries

Queries requiring more 
abstract reasoning

Role-play queries

APPLICATIONS TO LLMS : LOCALISE INFLUENCE



MECHANISTIC 
INTERPRETABILITY



MECHANISTIC INTERPRETABILIT Y



The study of reverse-engineering neural networks to explain the 
behaviour of ML models in terms of their internal components

429

WHAT IS MECHANISTIC INTERPRETABILIT Y?



The study of reverse-engineering neural networks to explain the 
behaviour of ML models in terms of their internal components

430

WHAT IS MECHANISTIC INTERPRETABILIT Y?

Circuits

ParametersFeatures

Windows

Car Body

Wheels
Car Detector



434[1] Image taken from: https://medium.com/@amanatulla1606/transformer-architecture-explained-2c49e2257b4c

What not to expect: a 
fully automated and 
systematic process that 
is easily actionable

What to expect: 
exposure to interesting 
ideas and LLM related 
interpretability 

CIRCUITS IN TRANSFORMERS



Step 1: choose a behaviour and curate a dataset that elicits that behaviour from the model

436[1] Conmy et al. “Towards automated circuit discovery for mechanistic interpretability." NeurIPS 2023.

Task Dataset Template Ideal Output
Greater-Than The <noun> lasted from the 

year XXYY to the year XX?? 
?? To be greater-Than YY

MI WORKFLOW



Step 1: choose a behaviour and curate a dataset that elicits that behaviour from the model

437[1] Conmy et al. “Towards automated circuit discovery for mechanistic interpretability." NeurIPS 2023.

Task Dataset Example Ideal Output
Greater-Than “The war lasted from 

1732 to 17”

“The investigation lasted 
from 1921 to 20”

“33” or “34” or …or “99”

“22” or “23” or …or “99”

MI WORKFLOW



Step 2: finding circuits for the behaviour of interest 

• is often formulated as a directed acyclic graph

• elements in this graph depend on the level of 
abstraction:

• Coarse: interactions between attention heads 
and MLPs 

• Granular: interactions between individual 
neurons 

438

MI WORKFLOW

[1] Hanna et al. “How does GPT-2 compute greater-than?: Interpreting mathematical abilities in a pre-trained language model.” NeurIPS (2024).

Input: “The war lasted from the 
year 1732 to the year 17”

Token Embeddings 
+ Layers 1-10

Attention 
Layer 11

MLP 
11

Logits

MLP 
12

Attention 
Layer 12



Step 3: graph pruning using patching experiments

• Patching experiments: overwrite the activation value of a node or 
edge with a corrupted activation, do a forward pass through the 
network, compare the output pre and post corruption. If no major 
change noticed, remove the component. 

• How can we corrupt an activation? 

439

Replacement with 
zero

Replacement with 
mean activation

Replacement with 
activation of another 

datapoint

Congratulations 
you have a circuit!

MI WORKFLOW
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• Goal: ascertain the direct effects of MLP 11 on the logits

MI WORKFLOW EXAMPLE

Input: “The war lasted from the 
year 1732 to the year 17”

Token Embeddings 
+ Layers 1-10

Attention 
Layer 11

MLP 
11

Logits

MLP 
12

Attention 
Layer 12
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1. Patch the path of MLP 11 to logits by using 
different inputs

Note: what goes to MLP12 and 
AttentionLayer12 is NOT corrupted 

MI WORKFLOW EXAMPLE

Input: “The war lasted from 
the year 1732 to the year 17”

Token Embeddings 
+ Layers 1-10

Attention 
Layer 11

MLP 
11

Logits

MLP 
12

Attention 
Layer 12

Input: “The war lasted from 
the year 1701 to the year 17”

Token Embeddings 
+ Layers 1-10

Attention 
Layer 11

MLP 
11
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1. Patch the path of MLP 11 to logits by using 
different inputs

2. Run the model and record the probability 
difference between patched and unpatched 
model

MI WORKFLOW EXAMPLE

the sentence start year (YY)
the two-digit output year 
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1. Patch the path of MLP 11 to logits by using 
different inputs

2. Run the model and record the probability 
difference between patched and unpatched 
model

3. Slight model performance change → un-
importance of the component → remove 
connection(s)

MI WORKFLOW EXAMPLE

Input: “The war lasted from 
the year 1732 to the year 17”

Token Embeddings 
+ Layers 1-10

Attention 
Layer 11

MLP 
11

Logits

MLP 
12

Attention 
Layer 12

Input: “The war lasted from 
the year 1701 to the year 17”

Token Embeddings 
+ Layers 1-10

Attention 
Layer 11

MLP 
11



What requires manual effort in the MI workflow?
• Defining the computational graph
• Specifying a metric to measure the impact of patching
• Specifying a threshold under which connections should be removed
• Potentially crafting corrupted datapoints
• Conducting patching experiments (circuit discovery)

445

WORK REQUIRED FOR THIS PIPELINE
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Towards Automatic Circuit DisCovery

WORK REQUIRED FOR THIS PIPELINE

What requires manual effort in the MI workflow?
• Defining the computational graph
• Specifying a metric to measure the impact of patching
• Specifying a threshold under which connections should be removed
• Potentially crafting corrupted datapoints
• Conducting patching experiments (circuit discovery)



• Learning a binary mask over model components* using an objective function 
that optimizes task performance** whilst encouraging mask sparsity

• * Granularity to be determined (e.g., attentions heads and MLPs) 
• ** measured by accuracy, KLD

• Non-masked elements -> subnetwork of the transformer -> can be treated 
as a circuit

447

AUTOMATICALLY DISCOVERING CIRCUITS (ACDC)

[1] Conmy et al. "Towards automated circuit discovery for mechanistic interpretability." NeurIPS (2023).



ℛ 𝜽 =
1
𝑁 

𝑖=1

𝑁

ℒ(ℎ 𝑥𝑖; 𝜽 , 𝑦𝑖)

  𝜽∗ = arg min{ℛ(𝜽)}
𝜽

448

SPARSIT Y I



ℛ 𝜽 =
1
𝑁 

𝑖=1

𝑁

ℒ(ℎ 𝑥𝑖; 𝜽 , 𝑦𝑖) + 𝜆 ∥ 𝜽 ∥0

∥ 𝜽 ∥0= 
𝑗=1

|𝜃|

𝕀[𝜃𝑗 ≠ 0]

  𝜽∗ = arg min{ℛ(𝜽)}
𝜽

 In practice we can’t use 𝐿0 norm directly because it is not differentiable

449

SPARSIT Y I

Learning Sparse Neural 
Networks through 𝐿0 

Regularisation
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𝐺 

(𝑥𝑖)𝑖=1
𝑛 : original 

set of prompts 
(𝑥𝑖

′)𝑖=1
𝑛 : corrupted 

set of prompts 

𝐻 𝑥𝑖, 𝑥𝑖
′

𝐷KL(𝐺(𝑥𝑖) ∥ 𝐻(𝑥𝑖, 𝑥′𝑖))

𝐷KL(𝐺 ∥ 𝐻)

𝐻 ⊆ 𝐺 𝐻 ⊆ 𝐺

ACDC EXAMPLE I
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ACDC EXAMPLE I I



Can ACDC automate circuit 
discovery? Yes and No!

454

Aspect Manually Found 
Circuits

ADCD-Discovered 
Circuits

Efficiency
Labor-intensive and 
time-consuming

significantly reducing 
the time

Scalability
Difficult to scale due to 
the need for human 
inspection

Scales easily without 
manual bottlenecks

Reproducibility
Results can vary due 
to subjective judgment

Produces consistent, 
reproducible results

Limitations
Requires deep domain 
expertise

Sensitive to 
hyperparameters and 
dataset selection

SUMMARY

ACDC: whilst not robust great step towards automation



456

ARE INDIVIDUAL NEURONS MONOSEMANTIC?

Monosemanticity say individual neurons capture individual concepts



457

ARE INDIVIDUAL NEURONS MONOSEMANTIC?

Monosemanticity means individual neurons capture individual concepts

This does not seem to be the case in practice → neurons appear to be “Polysemantic”

[1] Olah, Chris, et al. "Zoom in: An introduction to circuits." Distill 5.3 (2020): e00024-001.
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ARE INDIVIDUAL NEURONS MONOSEMANTIC?

Monosemanticity means individual neurons capture individual concepts

This does not seem to be the case in practice → neurons appear to be “Polysemantic”

[1] Olah, Chris, et al. "Zoom in: An introduction to circuits." Distill 5.3 (2020): e00024-001.

Question: do you think this would happen even if we align neurons to concepts as in CBMs?
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ARE INDIVIDUAL NEURONS MONOSEMANTIC?

Monosemanticity say individual neurons capture individual concepts

See below for a discussion on why cross entropy may naturally lead to”polysemantic” nodes
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THE POLYSEMANTIC HYPOTHESIS

DDNs may simulate much larger networks by using individual neurons 
as low-dimensional projections of the hypothetical larger model

[1] Bricken et al. “Towards Monosemanticity” at https://transformer-circuits.pub/2023/monosemantic-features/index.html#phenomenology-fsa
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THE POLYSEMANTIC HYPOTHESIS

DDNs may simulate much larger networks by using individual neurons 
as low-dimensional projections of the hypothetical larger model

[1] Bricken et al. “Towards Monosemanticity” at https://transformer-circuits.pub/2023/monosemantic-features/index.html#phenomenology-fsa

Could we then discover this “larger” neural network whose components are interpretable?
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FINDING THE HIGHER-LEVEL NET WORK

We want to find a representational space 𝒮 of a model’s latent 
activations ℋ (e.g., the output of the Transformer MLP) that is:
1. Sparse: activations in ℋ can be written as a combination of a handful of vectors in 𝒮. 

2. Overcomplete: dimensionality of 𝒮 >> dimensionality of ℋ

[1] Bricken et al. “Towards Monosemanticity” at https://transformer-circuits.pub/2023/monosemantic-features/index.html#phenomenology-fsa



463[1] Bricken et al. “Towards Monosemanticity” at https://transformer-circuits.pub/2023/monosemantic-features/index.html#phenomenology-fsa

FINDING INTERPRETABLE LATENT DIRECTIONS

We want to decompose each embedding 𝒙 𝑗  in a Transformer’s output as

where we want 𝑓𝑖 𝒙  to be a sparse function expressing how active the 𝑖-th 
discovered “feature”/”concept” is.

𝒙 𝑗 ≈ 𝒃ℋ + 
𝑖

𝑓𝑖 𝒙 𝑗 × 𝒔𝑖
Latent Embedding Bias shift Interpretable 

direction in 𝒮
Contribution of 
i-th direction



464[1] Bricken et al. “Towards Monosemanticity” at https://transformer-circuits.pub/2023/monosemantic-features/index.html#phenomenology-fsa

FINDING INTERPRETABLE LATENT DIRECTIONS

We want to decompose each embedding 𝒙 𝑗  in a Transformer’s output as

where we want 𝑓𝑖 𝒙  to be a sparse function expressing how active the 𝑖-th 
discovered “feature”/”concept” is.

𝒙 𝑗 ≈ 𝒃ℋ + 
𝑖

𝑓𝑖 𝒙 𝑗 × 𝒔𝑖
Latent Embedding Bias shift Interpretable 

direction in 𝒮
Contribution of 
i-th direction

Question: how would you learn such a decomposition?



465*In practice, we first shift x using a learnable pre-encoder bias vector, as otherwise it is hard to learn sparse representations here

FINDING INTERPRETABLE LATENT DIRECTIONS

One way to do this is via a simple one-layer sparse autoencoder!

𝒙 ෝ𝒙

ReLU 𝑊𝑒𝒙 + 𝒃𝑒  

𝑓 𝒙

𝑊𝑑𝑓 𝒙 + 𝒃𝑑

Encoder Decoder
ℒ 𝑥, ො𝑥 = 𝒙 −  ෝ𝒙 2

2 + 𝜆 𝑓 𝒙 1

Sparsity

Reconstruction
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SEEING THIS AS DICTIONARY LEARNING

This is an instance of Dictionary Learning or Topic Modelling

Completeness-aware Concept Extraction (CCE) can also be seen as a form of dictionary learning

[1] Image adapted from: Joyce Xu “Topic Modeling with LSA, PLSA, LDA & lda2Vec” at https://medium.com/nanonets/topic-modeling-with-lsa-psla-lda-and-lda2vec-555ff65b0b05

Organise Documents by “Topics”



467[1] Bricken et al. “Towards Monosemanticity” at https://transformer-circuits.pub/2023/monosemantic-features/index.html#phenomenology-fsa

EXPLORING A MODEL’S ACTIVATIONS

We can use this to discover monosemantic high—dimensional features 
that are not captured by individual neurons

𝑃 𝑠 | Arabic Script
𝑃 𝑠

Proxy Measure
This is a high-dimensional 
feature that almost 
exclusively fires when the 
text uses the Arabic Script



468[1] Bricken et al. “Towards Monosemanticity” at https://transformer-circuits.pub/2023/monosemantic-features/index.html#phenomenology-fsa

POTENTIAL APPLICATIONS

By decomposing a transformer’s output into interpretable concepts we can:

1. Determine a concept’s contribution to the model’s output or the next layer

2. Monitor the network to see if a specific concept is activated when we want 
to introduce safety guards.

3. Change the network’s behaviour in predictable ways via interventions.

4. Demonstrate that a network learnt or used a specific property that is 
important for a task.
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LIMITATIONS OF MI

Mechanistic interpretability is a young field, and as such it has a lot of 
known open challenges:
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LIMITATIONS OF MI

Mechanistic interpretability is a young field, and as such it has a lot of 
known open challenges:

1. Scalability of MI analyses is currently limited to small-ish models
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LIMITATIONS OF MI

Mechanistic interpretability is a young field, and as such it has a lot of 
known open challenges:

1. Scalability of MI analyses is currently limited to small-ish models

2. Understanding how training dynamics affect circuits/concepts/etc



472

LIMITATIONS OF MI

Mechanistic interpretability is a young field, and as such it has a lot of 
known open challenges:

1. Scalability of MI analyses is currently limited to small-ish models

2. Understanding how training dynamics affect circuits/concepts/etc

3. Exploring unexpected reasoning phenomena as in in-context 
learning
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LIMITATIONS OF MI

Mechanistic interpretability is a young field, and as such it has a lot of 
known open challenges:

1. Scalability of MI analyses is currently limited to small-ish models

2. Understanding how training dynamics affect circuits/concepts/etc

3. Exploring unexpected reasoning phenomena as in in-context 
learning

4. Many more!
200 Concrete Open Problems in 

Mechanistic Interpretability: 
Introduction - Neel Nanda (2022)

(A bit outdated but still useful/interesting)



MechInt has developed mostly via “grassroots”/ad-hoc efforts 
which means it is an area you can quickly get involved in!

475[1] Cammarata, Nick, et al. "Thread: circuits." Distill 5.3 (2020): e24.
[2] Anthropic “Transformer Circuits Thread” found at https://transformer-circuits.pub/

FURTHER MATERIAL

Distill Circuits Thread Anthropic Circuits Thread



QUESTIONS?


