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WHERE WE LEF T THINGS
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Local Attribution:

• SHAP

Saliency Maps:

• Vanilla Gradient

• SmoothGrad

• Grad-CAM

 



CONVENTIONAL CNNS

The output feature maps from the last convolutional layer are typically flattened and then 

passed into one or more fully connected layers before reaching the final classification layer

4



CNN WITH GLOBAL AVERAGE POOLING (GAP)

In architectures using Global Average Pooling (GAP) [1], the feature maps are summarized per 

channel using GAP, and the resulting feature vector is directly passed to the final classification layer

5
[1] Zhou, Bolei, et al. "Learning deep features for discriminative localization." Proceedings of the IEEE conference on computer vision and pattern recognition . 2016.
Image adapted from [1]
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GAP(𝑘) =
1

𝐻 × 𝑊


𝑖=1

𝐻



𝑗=1

𝑊

𝐴𝑖𝑗
(𝑘) Activation value at pixel 𝑖, j

for the 𝑘𝑡ℎ  feature map

Height and width 
of feature map

𝑦𝑐 =  

𝑘=1

𝐾

𝑤𝑘
𝑐 . GAP(𝑘) + 𝑏𝑐 linear weight associated 

with feature map 𝑘 for class 𝑐

[1] Zhou, Bolei, et al. "Learning deep features for discriminative localization." Proceedings of the IEEE conference on computer vision and pattern recognition . 2016.
Image adapted from [1]



CLASS ACTIVATION MAPPING (CAM) I

• Advantages of using GAP: 

• It is parameter-free and reduces dimensionality → helps avoid overfitting

• It sums out the spatial information → robust to spatial transformation (spatial invariance)

• Most importantly is its interpretability properties: the weight of the linear layer directly translate 

to importance of spatial features for a class → the very idea in CAM [1]

7
[1] Zhou, Bolei, et al. "Learning deep features for discriminative localization." Proceedings of the IEEE conference on computer vision and pattern recognition . 2016.
Image taken from [1]



CLASS ACTIVATION MAPPING (CAM) II
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CLASS ACTIVATION MAPPING (CAM) II

9

Assumption: I have 
normalised the feature 
maps and have converted 
them each to a heatmap



CLASS ACTIVATION MAPPING (CAM) II
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Assumption: I have 
normalised the feature 
maps and have converted 
them each to a heatmap

Question: Can I overlay 
the activation maps on 
the original image?



CLASS ACTIVATION MAPPING (CAM) II
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Assumption: I have 
normalised the feature 
maps and have converted 
them each to a heatmap

Question: Can I overlay 
the activation maps on 
the original image?

CAM heatmap for class c : 𝐿𝐶𝐴𝑀
𝑐 =  σ𝑘=1

𝐾 𝑤𝑘
𝑐 𝐴(𝑘)



GRAD-CAM

• CAM requires GAP followed by a linear layer → very architecture specific

• Grad-CAM [1] is a generalisation of CAM that works with any architecture!
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[1] Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D. and Batra, D., 2017. Grad-cam: Visual explanations from deep networks via gradient-based localization. In Proceedings of 
the IEEE international conference on computer vision (pp. 618-626). 



GRAD-CAM

• CAM requires GAP followed by a linear layer → very architecture specific

• Grad-CAM [1] is a generalisation of CAM that works with any architecture!

13

[1] Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D. and Batra, D., 2017. Grad-cam: Visual explanations from deep networks via gradient-based localization. In Proceedings of 
the IEEE international conference on computer vision (pp. 618-626). 

Activation Maps
Gradient-based 

feature importance



GRAD-CAM

• CAM requires GAP followed by a linear layer → very architecture specific

• Grad-CAM [1] is a generalisation of CAM that works with any architecture!
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[1] Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D. and Batra, D., 2017. Grad-cam: Visual explanations from deep networks via gradient-based localization. In Proceedings of 
the IEEE international conference on computer vision (pp. 618-626). 

Activation Maps
Gradient-based 

feature importance

Unlike other gradient methods, the gradient is not 

back-propagated all the way to the input layer, but to 

the last convolutional layer of the CNN (feature maps)



GRAD-CAM FORMULATION

• Step 1: compute gradient of class score w.r.t. feature maps

𝛼𝑘
𝑐 =

1

𝐻 × 𝑊
σ𝑖=1

𝐻 σ𝑗=1
𝑊 𝜕𝑦𝑐

𝜕𝐴
𝑖𝑗
(𝑘) 
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Gradient of class score w.r.t. pixel 
(𝑖, 𝑗) in feature map 𝐴𝑘   
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• Step 2: Grad-CAM heatmap for class 𝑐 
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• Step 2: Grad-CAM heatmap for class 𝑐 
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Gradient of class score w.r.t. pixel 
(𝑖, 𝑗) in feature map 𝐴𝑘   

• Step 2: Grad-CAM heatmap for class 𝑐 

𝐿𝐺𝑟𝑎𝑑−𝐶𝐴𝑀
𝑐 = 𝑅𝑒𝐿𝑈(

𝑘=1

𝐾

𝛼𝑘
𝑐𝐴 𝑘 )

• What’s the role of ReLU here?
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𝑐 =  
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FAMILY OF GRADIENT-BASED METHODS 
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[1] Nielsen, Ian E., et al. "Robust explainability: A tutorial on gradient-based attribution methods for deep neural networks." IEEE Signal Processing Magazine 39.4 (2022): 73-84.

Image taken from [1]. 

Useful Python Library

https://github.com/albermax/innvestigate

Comparative review of gradient-based methods [1]

******

https://github.com/albermax/innvestigate


THE STORY SO FAR
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DIFFERENT T YPES OF EXPLANATIONS
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WHAT’S WRONG WITH FEATURE AT TRIBUTION?
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WHAT’S WRONG WITH FEATURE AT TRIBUTION?

1. Low-level features like individual pixels are not always semantically meaningful:
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[1] Andrey Armyagov/Shutterstock

Can you guess what this is?



WHAT’S WRONG WITH FEATURE AT TRIBUTION?

1. Low-level features like individual pixels are not always semantically meaningful:
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[1] ZaZa Studio/Shutterstock

Limes!



WHAT’S WRONG WITH FEATURE AT TRIBUTION?

1. Low-level features like individual pixels are not always semantically meaningful:
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X-ray Manufacturing 
Artifact



WHAT’S WRONG WITH FEATURE AT TRIBUTION?

2. Feature maps lack of actionability!

28
[1] Dombrowski, Ann-Kathrin, et al. "Explanations can be manipulated and geometry is to blame." Advances in Neural Information Processing Systems 32 (2019).

What does this really tell you about how the model made a prediction?



WHAT’S WRONG WITH FEATURE AT TRIBUTION?

3. They are susceptible to adversarial attacks [1,2]

29
[1] Dombrowski, Ann-Kathrin, et al. "Explanations can be manipulated and geometry is to blame." Advances in Neural Information Processing Systems 32 (2019). 
[2] Ghorbani, Amirata, Abubakar Abid, and James Zou. "Interpretation of neural networks is fragile." Proceedings of the AAAI conference on artificial intelligence. Vol. 33. No. 01. 2019.

More on this next week!



WHAT’S WRONG WITH FEATURE AT TRIBUTION?

How can we go around the limitations of feature attribution?

• Other forms of explainability (e.g., knowledge distillation)

• Concept-based explainability!

30



WHAT ARE CONCEP TS?

Concepts are high-level and semantically meaningful units of information

31

Task:
bird species

Explanation of the prediction:
- wing colour
- beak length
- tail shape 



WHAT ARE CONCEP TS?

Concepts are high-level and semantically meaningful units of information

Concepts are useful when they are used by domain experts to communicate or explain things 

to one another

32

Task:
bird species

Explanation of the prediction:
- wing colour
- beak length
- tail shape 



DO NEURAL NET WORKS NATURALLY LEARN 

CONCEP TS?

Evidence generally suggests that is the case: lower levels are detecting texture or surface, 

whilst higher levels learn more semantically meaningful concepts  [1,2]

Next week you will hear in more detail about this :)

33

[1] Bau, David, et al. "Network dissection: Quantifying interpretability of deep visual representations."Proceedings of the IEEE conference on computer vision and pattern recognition . 2017
[2] Fong, Ruth, and Andrea Vedaldi. "Net2vec: Quantifying and explaining how concepts are encoded by filters in deep neural networks." Proceedings of the IEEE conference on computer vision 
and pattern recognition. 2018.
Image taken from [1]



POST-HOC 

CONCEP T-BASED 

EXPLAINABILITY



35

Post-hoc Concept-based XAI:

• T-CAV (Kim et al.)



T-CAV (CONCEPT ACTIVATION VECTOR):  INTUITION

• T-CAV [1] provides global 

explanations for a class of interest

36
[1] Kim, Been, et al. "Interpretability beyond feature attribution: Quantitative testing with concept activation vectors ( tcav)." International conference on machine learning. PMLR, 2018.
Image adapted from [1]
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• Quantifies the degree to which a 

user-defined concept is important 

to a classification result
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[1] Kim, Been, et al. "Interpretability beyond feature attribution: Quantitative testing with concept activation vectors ( tcav)." International conference on machine learning. PMLR, 2018.
Image adapted from [1]
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• T-CAV [1] provides global 
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• Quantifies the degree to which a 

user-defined concept is important 

to a classification result
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[1] Kim, Been, et al. "Interpretability beyond feature attribution: Quantitative testing with concept activation vectors ( tcav)." International conference on machine learning. PMLR, 2018.
Image adapted from [1]

How sensitive  prediction of zebra 
is to the presence of stripes



T-CAV: FORMULATION

40Image adapted from: Kim, Been, et al. "Interpretability beyond feature attribution: Quantitative testing with concept activat ion vectors (tcav)." International conference on machine learning. 
PMLR, 2018.

Step 1: Choose an intermediate layer 𝑓𝑙: 𝑅𝑛 → 𝑅𝑚 with 𝑚 neurons



T-CAV: FORMULATION

Step 1: Choose an intermediate layer 𝑓𝑙: 𝑅𝑛 → 𝑅𝑚 with 𝑚 neurons

Step 2: Learn the Concept Activations Vectors (CAVs)

• Train a linear classifier to distinguish between the activations of concept’s 

examples and random ones 

• The CAV is the vector orthogonal to the classification boundary 𝑣𝐶
𝑙

41Image adapted from: Kim, Been, et al. "Interpretability beyond feature attribution: Quantitative testing with concept activat ion vectors (tcav)." International conference on machine learning. 
PMLR, 2018.

set of examples for a concept 
and random examples



T-CAV: T-CAV SCORES

Step 3: Getting importance scores from CAVs

• T-CAV gauges the sensitivity of class 𝑘 to concept 𝐶

• Given a sample’s latent representation and the CAV, how do you think we 

should gauge this sensitivity?

42
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Step 3: Getting importance scores from CAVs
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should gauge this sensitivity?
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When in doubt, 72% of the time, the answer will be “derivatives”



T-CAV: T-CAV SCORES

Step 3: Getting importance scores from CAVs

• TCAV uses the directional derivative, 𝑆𝐶,𝑘,𝑙 𝑥  to gauge how much a  

classification changes with a change in a concept

44

CAV for concept 
𝐶 (e.g., stripes)

Intermediate representation of
          at layer 𝑙 

𝑆𝐶,𝑘,𝑙 𝑥 = ∇ℎ𝑙,𝑘 𝑓𝑙 𝑥  . 𝑣𝐶
𝑙  = ∇ℎ𝑙,𝑘 𝑓𝑙  . 𝑣𝐶

𝑙  
Output 

function

The rate of change of output function 
as we move in the direction of a 
concept from data point 



T-CAV: T-CAV SCORES

Step 3: Getting importance scores from CAVs

• TCAV uses the directional derivative, 𝑆𝐶,𝑘,𝑙 𝑥  to gauge how much a  

classification changes with a change in a concept

45

TCAV𝑄𝐶,𝑘,𝑙
=

|{𝑥 ∈ 𝑋𝑘:  𝑆𝐶,𝑘,𝑙 𝑥 > 0}|

|𝑋𝑘|

𝑋𝑘 : inputs 

with label 𝑘

T-CAV score is the fraction of 𝑘-class inputs that are positively influenced by concept 𝐶:

Question: why not also consider the negative influences?



T-CAV: APPLICATION

Medical diagnosis – image data: 

- Task: predicting diabetic retinopathy 

(DR) – level 0 (no DR) to 4 (proliferative) 

- DR level depends on evaluating a 

set of diagnostic concepts, such 

as microaneurysms (MA) or aneurysms 

(HMA) 

- Different concepts are more prominent 

at different DR levels

46Images adapted from: Kim, Been, et al. "Interpretability beyond feature attribution: Quantitative testing with concept activation vectors (tcav)." International conference on machine learning. PMLR, 
2018.
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Model error exposed: TCAV score 
for HMA feature is too high for level 1

Images adapted from: Kim, Been, et al. "Interpretability beyond feature attribution: Quantitative testing with concept activation vectors (tcav)." International conference on machine learning. PMLR, 
2018.



THE COST OF BEING GREAT

T-CAV is great! 

50



THE COST OF BEING GREAT

T-CAV is great! So great it is even discussed in a science communication book

51



THE COST OF BEING GREAT

However, T-CAV requires large sets of examples of each concept of interest:

52

For example, when finding the influence of the concept “stripes” for a DNN, T-
CAV requires a set of samples that all have the concept “stripes”

This is what we call a concept-supervised approach!



THE COST OF BEING GREAT

However, T-CAV requires large sets of examples of each concept of interest:

53

But, obtaining concept labels can be expensive and intractable

For example, when finding the influence of the concept “stripes” for a DNN, T-
CAV requires a set of samples that all have the concept “stripes”



54

Post-hoc Concept-based XAI:

• T-CAV (Kim et al.)

• ACE (Ghorbani et al.)



GOING UNSUPERVISED

55

”Wouldn’t it be nice if T-CAV concepts could be automatically discovered?”

- Amirata Ghorbani et al. (Probably…)

[1] Ghorbani, Amirata, et al. "Towards automatic concept-based explanations." Advances in Neural Information Processing Systems 32 (2019).



GOING UNSUPERVISED

56

We would like to discover concepts 
that are:
1. Meaningful
2. Coherent
3. Important



TOWARDS AUTOMATIC CONCEPT EXTRACTION

57

Main Idea: patches of pixels found across images can be thought of as concepts!

Training examples for class “car”

Image patches that are ”common” across all cars

Wheel Windshields Car lights



TOWARDS AUTOMATIC CONCEPT EXTRACTION

58

[1] Ghorbani, Amirata, et al. "Towards automatic concept-based explanations." Advances in Neural Information Processing Systems 32 (2019).

Here’s an architecture that can do this!

Main Idea: patches of pixels found across images can be thought of as concepts!



ACE: ARCHITECTURE

59

Step 1: segment the sample across multiple-resolutions (why?)

Desiderata enforced: meaningfulness



ACE: ARCHITECTURE
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Step 1: segment the sample across multiple-resolutions (why?)
            ACE uses SLIC [1] , a fast* multi-resolution segmentation algorithm. 

Desiderata enforced: meaningfulness
[1] Achanta, Radhakrishna, et al. "SLIC superpixels compared to state-of-the-art superpixel methods." IEEE transactions on pattern analysis and machine intelligence 34.11 (2012): 2274-2282.



ACE: ARCHITECTURE

61

Step 2: cluster extracted segments using a hidden layer of a CNN as a feature
             extractor (why?). Then get rid of outliers as these are not useful concepts.

Desiderata enforced: coherence



ACE: ARCHITECTURE

62

Step 3: use T-CAV with the newly discovered concepts to explain the prediction
            of the sample of interest!

Desiderata enforced: importance



ACE IN THE WILD

63

What are the most salient discovered 
concepts for some of the ImageNet classes?

[1] Figure adapted from: Ghorbani, Amirata, et al. "Towards automatic concept-based explanations." Advances in Neural Information Processing Systems 32 (2019).



ACE IN THE WILD

64

What are the most salient discovered 
concepts for some of the ImageNet classes?

[1] Figure adapted from: Ghorbani, Amirata, et al. "Towards automatic concept-based explanations." Advances in Neural Information Processing Systems 32 (2019).

Why do you think the jersey is a more salient concept for “Basketball” than the actual ball?



ACE IN THE WILD

65

What are the most salient discovered 
concepts for some of the ImageNet classes?

[1] Figure adapted from: Ghorbani, Amirata, et al. "Towards automatic concept-based explanations." Advances in Neural Information Processing Systems 32 (2019).
[2] Magister, Lucie Charlotte, et al. "GCExplainer: Human-in-the-Loop Concept-based Explanations for Graph Neural Networks." arXiv preprint arXiv:2107.11889 (2021).

ACE has also been generalised to learn 
concepts in Graph Neural Networks in 
GCExplainer (Magister et al. 2021) [2]



GROUNDING ACE

66

ACE’s hyperparameters and processing steps have several limitations:

1. We can never be certain that we properly cover all useful concepts

Important concepts for underrepresented populations could be removed as outliers!



GROUNDING ACE
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ACE’s hyperparameters and processing steps have several limitations:

1. We can never be certain that we properly cover all useful concepts

2. We won’t detect concepts that interact non-linearly with the output labels

Looking at the gradients provides understanding of local (linear) sensitivity

𝑆𝐶,𝑘,𝑙 𝑥 = ∇ℎ𝑙,𝑘 𝑓𝑙 𝑥  . 𝑣𝐶
𝑙
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Concept-based Post-hoc XAI:

• T-CAV (Kim et al.)

• ACE (Ghorbani et al.)

• CCE (Yeh et al.)



CCE [1] explains a DNN 𝜓 𝒙  by discovering a complete set of concepts.

We assume that 𝜓 𝒙  can be decomposed into:

1. A mapping Φ from the inputs 𝒙 to an intermediate hidden layer Φ 𝒙 ; and

2. A mapping 𝑓 from that intermediate hidden layer Φ 𝒙  to the output layer’s prediction.

COMPLETENESS-AWARE CONCEP T EXTRACTION

69

[1] Yeh, Chih-Kuan, et al. "On completeness-aware concept-based explanations in deep neural networks." Advances in Neural Information Processing Systems 33 (2020): 20554-20565.



LEARNING CONCEP T MATRICES

Main Idea: learn a matrix of concept vectors 𝑪 ∈ ℝ𝑘×𝑚 and use a “concept 

completeness score” to measure their completeness:

70

𝑛𝑓 𝒄𝟏, … , 𝒄𝒎 =

sup
𝑔

ℙ𝒙,𝑦∼𝑉 𝑦 = argmax
𝑦′

𝑓𝑦′ 𝑔 𝑪 𝜙 𝑥 − 𝑎𝑟

ℙ𝑥,𝑦∼𝑉 𝑦 = argmax
𝑦′

𝑓𝑦′ 𝒙 − 𝑎𝑟



LEARNING CONCEP T MATRICES

Main Idea: learn a matrix of concept vectors 𝑪 ∈ ℝ𝑘×𝑚 and use a “concept 

completeness score” to measure their completeness:

Then, update 𝑪 by optimising this score!
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𝑓𝑦′ 𝑔 𝑪 𝜙 𝑥 − 𝑎𝑟

ℙ𝑥,𝑦∼𝑉 𝑦 = argmax
𝑦′

𝑓𝑦′ 𝒙 − 𝑎𝑟
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Looks very scary but is is saying a very simple thing:

“If I project the hidden state into the concept space 
defined by 𝐶, can I faithfully reconstruct it afterwards?”𝑛𝑓 𝒄𝟏, … , 𝒄𝒎 =

sup
𝑔

 ℙ𝒙,𝑦∼𝑉 𝑦 = argmax
𝑦′

𝑓𝑦′ 𝑔 𝑪 𝜙 𝑥  − 𝑎𝑟

ℙ𝑥,𝑦∼𝑉 𝑦 = argmax
𝑦′

𝑓𝑦′ 𝒙  − 𝑎𝑟
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Looks very scary but is is saying a very simple thing:

“If I project the hidden state into the concept space 
defined by 𝐶, can I faithfully reconstruct it afterwards?”𝑛𝑓 𝒄𝟏, … , 𝒄𝒎 =

sup
𝑔

 ℙ𝒙,𝑦∼𝑉 𝑦 = argmax
𝑦′

𝑓𝑦′ 𝑔 𝑪 𝜙 𝑥  − 𝑎𝑟

ℙ𝑥,𝑦∼𝑉 𝑦 = argmax
𝑦′

𝑓𝑦′ 𝒙  − 𝑎𝑟

It measures ”faithfulness” by looking at 
the DNN’s accuracy when the hidden 
layer is replaced by its reconstruction!



COMPLETENESS VIA RECONSTRUCTION

We define a concept set’s “completeness score” w.r.t.DNN 𝜓 𝒙 as:

Where:

1. 𝑪 = 𝒄𝟏, 𝒄𝟐, ⋯ , 𝒄𝒎
𝑇 is the matrix of concept vectors → this is the set of 

concept vectors we are evaluating!

2. 𝒟 is our testing dataset
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Yeh, Chih-Kuan, et al. "On completeness-aware concept-based explanations in deep neural networks." Advances in Neural Information Processing Systems 33 (2020): 20554-20565.

ConceptCompleteness 𝒄𝟏, ⋯ , 𝒄𝒎 ≔

sup
𝑔

Acc 𝒙,𝑦 ∼𝒟 𝑓 g 𝑪 Φ 𝒙 , 𝑦 − Acc 𝒙,𝑦 ∼𝒟 random label, 𝑦

Acc 𝒙,𝑦 ∼𝒟 𝑓(Φ 𝑥 , 𝑦 − Acc 𝒙,𝑦 ∼𝒟 random label, 𝑦
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We define a concept set’s “completeness score” w.r.t.DNN 𝜓 𝒙 as:

Where:

1. 𝑪 = 𝒄𝟏, 𝒄𝟐, ⋯ , 𝒄𝒎
𝑇 is the matrix of concept vectors → this is the set of 

concept vectors we are evaluating!

2. 𝒟 is our testing dataset
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Yeh, Chih-Kuan, et al. "On completeness-aware concept-based explanations in deep neural networks." Advances in Neural Information Processing Systems 33 (2020): 20554-20565.

ConceptCompleteness 𝒄𝟏, ⋯ , 𝒄𝒎 ≔

sup
𝑔

Acc 𝒙,𝑦 ∼𝒟 𝑓 g 𝑪 Φ 𝒙 , 𝑦 − Acc 𝒙,𝑦 ∼𝒟 random label, 𝑦

Acc 𝒙,𝑦 ∼𝒟 𝑓(Φ 𝑥 , 𝑦 − Acc 𝒙,𝑦 ∼𝒟 random label, 𝑦
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We define a concept set’s “completeness score” w.r.t. DNN 𝜓 𝒙  as:
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Yeh, Chih-Kuan, et al. "On completeness-aware concept-based explanations in deep neural networks." Advances in Neural Information Processing Systems 33 (2020): 20554-20565.

ConceptCompleteness 𝒄𝟏, ⋯ , 𝒄𝒎 ≔

sup
𝑔

Acc 𝒙,𝑦 ∼𝒟 𝑓 g 𝑪 Φ 𝒙 , 𝑦 − Acc 𝒙,𝑦 ∼𝒟 random label, 𝑦

Acc 𝒙,𝑦 ∼𝒟 𝑓(Φ 𝑥 , 𝑦 − Acc 𝒙,𝑦 ∼𝒟 random label, 𝑦

Can we learn a model 𝑔 that can reconstruct the hidden layer from the concept scores?
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We define a concept set’s “completeness score” w.r.t. DNN 𝜓 𝒙  as:
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Yeh, Chih-Kuan, et al. "On completeness-aware concept-based explanations in deep neural networks." Advances in Neural Information Processing Systems 33 (2020): 20554-20565.

ConceptCompleteness 𝒄𝟏, ⋯ , 𝒄𝒎 ≔

sup
𝑔

Acc 𝒙,𝑦 ∼𝒟 𝑓 g 𝑪 Φ 𝒙 , 𝑦 − Acc 𝒙,𝑦 ∼𝒟 random label, 𝑦

Acc 𝒙,𝑦 ∼𝒟 𝑓(Φ 𝑥 , 𝑦 − Acc 𝒙,𝑦 ∼𝒟 random label, 𝑦

Can we learn a model 𝑔 that can reconstruct the hidden layer from the concept scores?

And adjust for the accuracy of a random (why?)



COMPLETENESS VIA RECONSTRUCTION

We define a concept set’s “completeness score” w.r.t. DNN 𝜓 𝒙  as:

Let’s learn a set of concept vectors that maximises this metric!
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ConceptCompleteness 𝒄𝟏, ⋯ , 𝒄𝒎 ≔

sup
𝑔

Acc 𝒙,𝑦 ∼𝒟 𝑓 g 𝑪 Φ 𝒙 , 𝑦 − Acc 𝒙,𝑦 ∼𝒟 random label, 𝑦

Acc 𝒙,𝑦 ∼𝒟 𝑓(Φ 𝑥 , 𝑦 − Acc 𝒙,𝑦 ∼𝒟 random label, 𝑦



COMPLETENESS-AWARE CONCEP T EXTRACTION
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We want to learn 𝑘 concept vectors 𝐶 ∈ ℝ𝑘×𝑚 such that:

1. Each vector represents a distinct concept direction

2. When a hidden layer of the input DNN is projected into the concept space, 

their resulting score preserves all the information needed to reconstruct 

the hidden layer. 



COMPLETENESS-AWARE CONCEP T EXTRACTION
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COMPLETENESS-AWARE CONCEP T EXTRACTION
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This is the concept matrix we want to learn
(originally, we randomly initialise it)



COMPLETENESS-AWARE CONCEP T EXTRACTION

82Step 1: project the DNN’s hidden layer into the concept space



COMPLETENESS-AWARE CONCEP T EXTRACTION

83Step 2: compute a set of concept scores by thresholding and normalising the concept projection



COMPLETENESS-AWARE CONCEP T EXTRACTION

84Step 3: pass the concepts scores to a learnable model 𝑔 𝒔 = 𝒉 that aims to reconstruct 𝒉 from 𝒔



COMPLETENESS-AWARE CONCEP T EXTRACTION

85Step 4: use 𝒉 as the reconstructed hidden layer and predict an output class using the rest of the DNN



CONCEP T DIVERSITY AND COHERENCE

86

CCE further encourages discovered concepts to be:

1. Coherent: similar samples should remain close in concept-space



CONCEP T DIVERSITY AND COHERENCE
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CCE further encourages discovered concepts to be:

1. Coherent: similar samples should remain close in concept-space

2. Diverse: concept vectors should be as distinct from each other as possible



CONCEP T CONTRIBUTIONS
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We can assign each concept a score that fairly represents how much they 

contributed towards the completeness score

Does this look familiar?



CONCEP T CONTRIBUTIONS
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We can assign each concept a score that fairly represents how much they 

contributed towards the completeness score

These are Shapley Scores (i.e., ConceptSHAP)



CCE: APPLICATIONS
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In vision, CCE can discover meaningful human-understandable concepts:

Yeh, Chih-Kuan, et al. "On completeness-aware concept-based explanations in deep neural networks." Advances in Neural Information Processing Systems 33 (2020): 20554-20565.



CCE: APPLICATIONS
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And it can be applied to other data modalities like text!

[1] Yeh, Chih-Kuan, et al. "On completeness-aware concept-based explanations in deep neural networks." Advances in Neural Information Processing Systems 33 (2020): 20554-20565.



TODAY IN A NUTSHELL
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QUESTIONS?
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