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Saliency Maps:

e Vanilla Gradient

e SmoothGrad
e Grad-CAM




CONVENTIONAL CNNS

The from the last convolutional layer are typically and then
passed into one or more fully connected layers before reaching the final classification layer

fc_3 fc_4
Fully-Connected Fully-Connected
Neural Network Neural Network
Conv_1 Conv_2 RelU activation
Convolution Convolution 1 /—&
(5 X 5) kernel Max-Pooling (5 X 5) kernel Max-Pooling (with
valid padding 2x2) valid padding (2x2) dronaiit]
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CNN WITH GLOBAL AVERAGE POOLING (GAP)

In architectures using Global Average Pooling (GAP) [1], the feature maps are summarized per
channel using GAP, and the resulting feature vector is directly passed to the final classification layer
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[1] Zhou, Bolei, et al. "Learning deep features for discriminative localization." Proceedings of the IEEE conference on computer vision and pattern recognition. 2016
Image adapted from [1]



CNN WITH GLOBAL AVERAGE POOLING (GAP)

In architectures using Global Average Pooling (GAP) [1], the feature maps are summarized per
channel using GAP, and the resulting feature vector is directly passed to the final classification layer
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[1] Zhou, Bolei, et al. "Learning deep features for discriminative localization." Proceedings of the IEEE conference on computer vision and pattern recognition. 2016
Image adapted from [1]



CLASS ACTIVATION MAPPING (CAM) |

- Advantages of using GAP:

It is parameter-free and reduces dimensionality = helps avoid overfitting
It sums out the spatial information = robust to spatial transformation (spatial invariance)

Most importantly is its interpretability properties: the weight of the linear layer directly translate

to importance of spatial features for a class = the very idea in CAM [1]

[1] Zhou, Bolei, et al. "Learning deep features for discriminative localization." Proceedings of the IEEE conference on computer vision and pattern recognition. 2016

Image taken from [1]



CLASS ACTIVATION MAPPING (CAM) I
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normalised the feature
maps and have converted
them each to a heatmap



CLASS ACTIVATION MAPPING (CAM) I

<200

JZ10@

<Z00

<Z200

Assumption: | have
normalised the feature
maps and have converted
them each to a heatmap

Question: Can | overlay
the activation maps on
the original image?
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CLASS ACTIVATION MAPPING (CAM) I
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Question: Can | overlay
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Map the original image?
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GRAD-CAM

- CAM requires GAP followed by a linear layer = very architecture specific

- Grad-CAM [1] is a generalisation of CAM that works with any architecture!

[1] Selvaraju, RR., Cogswell, M., Das, A., Vedantam, R., Parikh, D. and Batra, D., 2017. Grad-cam: Visual explanations from deep networks via gradient-based localization. In Proceedings of
the IEEE international conference on computer vision (pp. 618-626).
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GRAD-CAM

- CAM requires GAP followed by a linear layer = very architecture specific

- Grad-CAM [1] is a generalisation of CAM that works with any architecture!
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[1] Selvaraju, RR., Cogswell, M., Das, A., Vedantam, R., Parikh, D. and Batra, D., 2017. Grad-cam: Visual explanations from deep networks via gradient-based localization. In Proceedings of
the IEEE international conference on computer vision (pp. 618-626).
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GRAD-CAM

- CAM requires GAP followed by a linear layer = very architecture specific

- Grad-CAM [1] is a generalisation of CAM that works with any architecture!

oot | [ S

Unlike other gradient methods, the gradient is not
back-propagated all the way to the input layer, but to
the last convolutional layer of the CNN (feature maps)

[1] Selvaraju, RR., Cogswell, M., Das, A., Vedantam, R., Parikh, D. and Batra, D., 2017. Grad-cam: Visual explanations from deep networks via gradient-based localization. In Proceedings of
the IEEE international conference on computer vision (pp. 618-626).
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GRAD-CAM FORMULATION

- Step 1: compute gradient of class score w.r.t. feature maps

ZH ZW oy°© Gradient of class score w.rt. pixel
i=14j=1 4,0 ) in feat A
ij (i,J) in feature map
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GRAD-CAM FORMULATION

- Step 1: compute gradient of class score w.r.t. feature maps
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GRAD-CAM FORMULATION

- Step 1: compute gradient of class score w.r.t. feature maps
H w  0y°© Gradient of class score w.rt. pixel k) — 1
ay — GAP(®) =
T Hx Wzl 12] 1 aAg.{) (i,)) in feature map A¥ HxW

- Step 2: Grad-CAM heatmap for class ¢
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GRAD-CAM FORMULATION

- Step 1: compute gradient of class score w.r.t. feature maps

ZH ZW oy°© Gradient of class score w.rt. pixel
i=14j=1 4,0 ) in feat A
ij (i,J) in feature map
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- Step 2: Grad-CAM heatmap for class ¢
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GRAD-CAM FORMULATION

- Step 1: compute gradient of class score w.r.t. feature maps

Z Gradient of class score w.rt. pixel
1 j=1

ay =
k aA(k) (i,)) in feature map A¥

HXW

- Step 2: Grad-CAM heatmap for class ¢

%‘rad—CAM= ReLU(z aliA(k) )
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GRAD-CAM FORMULATION

- Step 1: compute gradient of class score w.r.t. feature maps

Z Gradient of class score w.rt. pixel
1 j=1

ay =
k 6A(k) (i,)) in feature map A¥

HXW

- Step 2: Grad-CAM heatmap for class ¢

%‘rad—CAM= ReLU(z aliA(k) )

- What's the role of RelLU here?
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FAMILY OF GRADIENT-BASED METHODS

[ SmoothGrad ) Guided Grad-CAM ( Grad-CAM

( Saliency ) Gradientolnput

Useful Python Library

https://github.com/albermax/innvestigate

Comparative review of gradient-based methods [1]

[1] Nielsen, lan E., et al. "Robust explainability: A tutorial on gradient-based attribution methods for deep neural networks." IEEE Signal Processing Magazine 39.4 (2022): 73-84.

Image taken from [1].
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https://github.com/albermax/innvestigate
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DIFFERENT TYPES OF EXPLANATIONS

LEGEND
. Local Explanations

. Global Explanations
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WHAT'S WRONG WITH FEATURE ATTRIBUTION?



WHAT'S WRONG WITH FEATURE ATTRIBUTION?

1. Low-level features like individual pixels are not always semantically meaningful:

Can you guess what this is?

[1] Andrey Armyagov/Shutterstock
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WHAT'S WRONG WITH FEATURE ATTRIBUTION?

1. Low-level features like individual pixels are not always semantically meaningful:

[1] ZaZa Studio/Shutterstock
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WHAT'S WRONG WITH FEATURE ATTRIBUTION?

1. Low-level features like individual pixels are not always semantically meaningful:

~”

X-ray Manufacturing
Artifact

COVID-19 Positive X-ray
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WHAT'S WRONG WITH FEATURE ATTRIBUTION?

2. Feature maps lack of actionability!

Original Image

., ; ~ ,' .\ W 'A’w. Av:
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What does this really tell you about how the model made a prediction?

[1] Dombrowski, Ann-Kathrin, et al. "Explanations can be manipulated and geometry is to blame " Advances in Neural Information Processing Systems 32 (2019)



WHAT'S WRONG WITH FEATURE ATTRIBUTION?

3. They are susceptible to adversarial attacks [1,2]

Original Image Manipulated Image
v NI TR N TR
| ’.’ﬁ?E,‘@: "v"; " "'! | . ;“'.a.“z.l "b‘n‘ ‘tt"l ul",‘J
_ “_ , . “ o4 '5- . ’-,\Ii |

Y e € % €

More on this next week!

[1] Dombrowski, Ann-Kathrin, et al. "Explanations can be manipulated and geometry is to blame " Advances in Neural Information Processing Systems 32 (2019) 29
[2] Ghorbani, Amirata, Abubakar Abid, and James Zou. "Interpretation of neural networks is fragile." Proceedings of the AAAI conference on artificial intelligence. Vol. 33. No. 01. 2019



WHAT'S WRONG WITH FEATURE ATTRIBUTION?

How can we go around the limitations of feature attribution?

Other forms of explainability (e.g., knowledge distillation)

Concept-based explainability!

30



WHAT ARE CONCEPTS?

Concepts are high-level and semantically meaningful units of information

Task:
bird species

Explanation of the prediction:
- wing colour

- beak length

- tail shape
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WHAT ARE CONCEPTS?

Concepts are high-level and semantically meaningful units of information

Task:

bird species
Explanation of the prediction:

=&
-
- wing colour
% - beak length
v

- tail shape

Concepts are useful when they are used by domain experts to communicate or explain things
to one another

32



DO NEURAL NETWORKS NATURALLY LEARN

CONCEPTS?

Evidence generally suggests that is the case: lower levels are detecting texture or surface,
whilst higher levels learn more semantically meaningful concepts [1,2]
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Next week you will hear in more detail about this :)

[1] Bau, David, et al. "Network dissection: Quantifying interpretability of deep visual representations." Proceedings of the |EEE conference on computer vision and pattern recognition. 2017
[2] Fong, Ruth, and Andrea Vedaldi. "Net2vec: Quantifying and explaining how concepts are encoded by filters in deep neural networks." Proceedings of the IEEE conference on computer vision

and pattern recognition. 2018
Image taken from [1]
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Post-hoc Concept-based XAl:  °
¢ T-CAV (Kim et al.)



T-CAV (CONCEPT ACTIVATION VECTOR): INTUITION

- T-CAV [1] provides global

explanations for a class of interest

[1] Kim, Been, et al. "Interpretability beyond feature attribution: Quantitative testing with concept activation vectors (tcav)." International conference on machine learning. PMLR, 2018
Image adapted from [1]



T-CAV (CONCEPT ACTIVATION VECTOR): INTUITION

- T-CAV [1] provides global

explanations for a class of interest

« Learns concepts from examples

[1] Kim, Been, et al. "Interpretability beyond feature attribution: Quantitative testing with concept activation vectors (tcav)." International conference on machine learning. PMLR, 2018
Image adapted from [1]



T-CAV (CONCEPT ACTIVATION VECTOR): INTUITION

- T-CAV [1] provides global

explanations for a class of interest

« Learns concepts from examples

- Quantifies the degree to which a
user-defined concept is important
to a classification result

Imag apted from [1]

[1] Kim, Been, et al. "Interpretability beyond feature attribution: Quantitative testing with concept activation vectors (tcav)." International conference on machine
e ad

earning. PMLR, 2018
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T-CAV (CONCEPT ACTIVATION VECTOR): INTUITION

How sensitive prediction of zebra
- T-CAV [1] provides global Is to the presence of stripes

explanations for a class of interest

N
e /( A trained
/(( ((lf: machine learning model [)( Z )
‘ :.‘ (e.g., neural network)
- Learns concepts from examples i zebra-ness

- Quantifies the degree to which a I

Was striped concept important TCAV score for

user-defined concept is important to this BB image classifier?

to a classification result

striped not striped

[1] Kim, Been, et al. "Interpretability beyond feature attribution: Quantitative testing with concept activation vectors (tcav)." International conference on machine learning. PMLR, 2018
Image adapted from [1]
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-CAV: FORMULATION

Step 1: Choose an intermediate layer f;: R™ —- R™ with m neurons

B K™ class

m

Image adapted from: Kim, Been, et al. "Interpretability beyond feature attribution: Quantitative testing with concept activation vectors (tcav)." International conference on machine learning
PMLR, 2018



-CAV: FORMULATION

Step 1: Choose an intermediate layer f;: R™ —- R™ with m neurons

Step 2: Learn the Concept Activations Vectors (CAVs)

- Train a linear classifier to distinguish between the activations of concept's
examples and random ones

. The CAV is the vector orthogonal to the classification boundary v
R Tt o &) @ ) 1
I = 2= = = =
- UC \..// (é)
‘t@b ﬂ%ﬁé &5 @ /i (D i ) f1 (&%)

(((\\A
%

Image adapted from: Kim, Been, et al. "Interpretability beyond feature attribution: Quantitative testing with concept activation vectors (tcav)." International conference on machine learnin

PMLR, 2018
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-CAV: T-CAV SCORES

Step 3: Getting importance scores from CAVs
- T-CAV gauges the sensitivity of class k to concept C

Given a sample’s latent representation and the CAV, how do you think we
should gauge this sensitivity?

42



-CAV: T-CAV SCORES

Step 3: Getting importance scores from CAVs
- T-CAV gauges the sensitivity of class k to concept C

Given a sample’s latent representation and the CAV, how do you think we
should gauge this sensitivity?

When in doubt, 72% of the time, the answer will be “derivatives’
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-CAV: T-CAV SCORES

Step 3: Getting importance scores from CAVs

. TCAV uses the directional derivative, S¢ . ;(x) to gauge how much a
classification changes with a change in a concept

Intermediate representation of
"4 ot layer I

The rate of change of output function
Sea1 () = Vhyi (fi(x)) . ve = Vhy, (i %)) v e
Outp-ut CAV for concept
function C (e.qg., stripes)
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-CAV: T-CAV SCORES

Step 3: Getting importance scores from CAVs

. TCAV uses the directional derivative, S¢ . ;(x) to gauge how much a
classification changes with a change in a concept

T-CAV score is the fraction of k-class inputs that are positively influenced by concept C:

toav. = 1€ X Scpei () > O} X,: inputs
ekt | X | with label k

) \*.\7.,“
e Ve \

Question: why not also consider the negative influences?

45



-CAV: APPLICATION

Medical diagnosis — image data:

- Task: predicting diabetic retinopathy
(DR) - level 0 (no DR) to 4 (proliferative)

- DR level depends on evaluating a
set of diagnostic concepts, such
as microaneurysms (MA) or aneurysms

(HMA)

- Different concepts are more prominent
at different DR levels

46

Images adapted from: Kim, Been, et al. "Interpretability beyond feature attribution: Quantitative testing with concept activation vectors (tcav)." International conference on machine learning. PMLR,

2018



-CAV: APPLICATION

HMA distribution on predicted DR

04
( - I =i ()

- DR level depends on evaluating a " levell level2 level3 level4

Medical diagnosis — image data:

- Task: predicting diabetic retinopathy
(DR) - level 0 (no DR) to 4 (proliferative)

% of images with HMA

set of diagnostic concepts, such

as microaneurysms (MA) or aneurysms
(HMA)

- Different concepts are more prominent
at different DR levels

Images adapted from: Kim, Been, et al. "Interpretability beyond feature attribution: Quantitative testing with concept activation vectors (tcav)." International conference on machine learning. PMLR, 47

2018



-CAV: APPLICATION

: : . . HMA distribution on predicted DR
Medical diagnosis — image data:

- Task: predicting diabetic retinopathy ?
(DR) - level 0 (no DR) to 4 (proliferative) g . I
- DR level depends on evaluating a e e e ey
set of diagnostic concepts, such
O ovel 1 Letne TCAV for DR level 1

as microaneurysms (MA) or aneurysms
(HMA)

TCAV score

- Different concepts are more prominent
at different DR levels

HMA

Images adapted from: Kim, Been, et al. "Interpretability beyond feature attribution: Quantitative testing with concept activation vectors (tcav)." International conference on machine learning. PMLR,

2018
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-CAV: APPLICATION

Medical diagnosis — image data:

- Task: predicting diabetic retinopathy
(DR) - level 0 (no DR) to 4 (proliferative)

- DR level depends on evaluating a
set of diagnostic concepts, such
as microaneurysms (MA) or aneurysms

(HMA)

- Different concepts are more prominent
at different DR levels

Images adapted from: Kim, Been, et al. "Interpretability beyond feature attribution: Quantitative testing with concept activation vectors (tcav)." International conference on machine learning. PMLR,

2018

HMA distribution on predicted DR

<
=
T
£ 04
S
v 13
@ 03
o
[+
E 02
6 1
0 - A .
level 1 level 2 level 3 level 4
O ovel 1 Letne TCAV for DR level 1

TCAV score

MA HMA

Model error exposed: TCAV score
for HMA feature is too high for level 1
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HE COST OF BEING GREAT

T-CAV is great!



HE COST OF BEING GREAT

T-CAV is great! So great it is even discussed in a science communication book

—
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THE ALIGNMENT
PROBLEM

Machine Learning and Human Values
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HE COST OF BEING GREAT

However, T-CAV requires large sets of examples of each concept of interest:

For example, when finding the influence of the concept “stripes” for a DNN, T-
CAV requires a set of samples that all have the concept “stripes”

This is what we call a concept-supervised approach!
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HE COST OF BEING GREAT

However, T-CAV requires large sets of examples of each concept of interest:

For example, when finding the influence of the concept “stripes” for a DNN, T-
CAV requires a set of samples that all have the concept “stripes”

But, obtaining concept labels can be expensive and intractable
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Post-hoc Concept-based XAl:  °
e T-CAV (Kim et al.)
 ACE (Ghorbani et al.)




GOING UNSUPERVISED

"Wouldn't it be nice if T-CAV concepts could be automatically discovered?”

- Amirata Ghorbani et al. (Probably...)
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GOING UNSUPERVISED

We would like to discover concepts
that are:

1. Meaningful

2. Coherent

3. Important

56



OWARDS AUTOMATIC CONCEPT EXTRACTION

Main ldea: patches of pixels found across images can be thought of as concepts!

Training examples for class “car”

Image patches that are "'common” across all cars

Wheel Windshields Car lights

‘ )
R 7 ii' & n”'—:f'
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OWARDS AUTOMATIC CONCEPT EXTRACTION

Main ldea: patches of pixels found across images can be thought of as concepts!

(a) Multi-resolution segmentation of images (b) Clustering similar segments and removing outliers {c) Computing saliency of concepts

Importance Scores

)
k] .l->
' Bg

Here's an architecture that can do this!
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ACE: ARCHITECTURE

(a) Multi-resolution segmentation of images
BTy 73 7 '
& i o
4
-~ L
o
v
-

Step 1: segment the sample across multiple-resolutions (why?)

Desiderata enforced: meaningfulness
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ACE: ARCHITECTURE

(a) Multi-resolution segmentation of images

=
o
I
n_J

%«

Step 1: segment the sample across multiple-resolutions (why?)
ACE uses SLIC [1], a fast™ multi-resolution segmentation algorithm.

Desiderata enforced: meaningfulness 50



ACE: ARCHITECTURE

(a) Multi-resolution segmentation of images (b) Clustering similar segments and removing outliers

. - . - I~ “ee | I

-’
3D

Step 2: cluster extracted segments using a hidden layer of a CNN as a feature
extractor (why?). Then get rid of outliers as these are not useful concepts.

Desiderata enforced: coherence



ACE: ARCHITECTURE

(a) Multi-resolution segmentation of images (b) Clustering simidlar segments and removing outliers {c) Computing saliency of concepts

ESN ..
B
ISR l.
Nu i
_

Step 3: use T-CAV with the newly discovered concepts to explain the prediction
of the sample of interest!

Desiderata enforced: importance

Importance Scores
) B 2 ) 0-8 ..
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Most Salient

2™ most salient

ACE IN THE WILD

Lionfish

e LS
) 3
N -
. -
\
2 4
B = 3

Most Salient

2™ most salient

Police Van

Most Salient

2™ most salient

Basketball

What are the most salient discovered

\) - . concepts for some of the ImageNet classes?
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Most Salient
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2™ most salient

ACE IN THE WILD

Lionfish Police Van Basketball

Most Salient
Most Salient

What are the most salient discovered

- . concepts for some of the ImageNet classes?

Why do you think the jersey is a more salient concept for “Basketball” than the actual ball?

2™ most salient
2™ most salient

b4



Most Salient

2™ most salient

ACE IN THE WILD

Lionfish

Most Salient

2™ most salient

Police Van

Basketball

LE

What are the most salient discovered

- . concepts for some of the ImageNet classes?

Most Salient

2™ most salient

concepts in Graph Neural Networks in
GCExplainer (Magister et al. 2021) [2]
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GROUNDING ACE

ACE's hyperparameters and processing steps have several limitations:

1. We can never be certain that we properly cover all useful concepts

Important concepts for underrepresented populations could be removed as outliers!
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GROUNDING ACE

ACE's hyperparameters and processing steps have several limitations:

1.

2.

We can never be certain that we properly cover all useful concepts

We won't detect concepts that interact non-linearly with the output labels

Looking at the gradients provides understanding of local (linear) sensitivity

Scia(x) =Vh  (f,(x)) . v
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Concept-based Post-hoc XAl: °
« T-CAV (Kim et al.)
 ACE (Ghorbani et al.)
 CCE (Yeh et al.)




COMPLETENESS-AWARE CONCEPT EXTRACTION

CCE [1] explains a DNN ¥(x) by discovering a complete set of concepts.

Latent Code Encoder

X heR™ Label Predictor  § ¢ [0,1]%
.’-*-';'\i?:r;}.é
=< i
.'.,h»-._LTh_*r.,ﬁﬁl,ﬁ:-.-ﬁ-' < f(h)
\

We assume that ¥ (x) can be decomposed into:
1. A mapping ® from the inputs x to an intermediate hidden layer ®(x); and

2. A mapping f from that intermediate hidden layer ®(x) to the output layer's prediction.



LEARNING CONCEPT MATRICES

Main Idea: learn a matrix of concept vectors € € R¥*™ and use a “concept
completeness score” to measure their completeness:

sgp Pyy~v [y = argyr}iax fy (g(C ¢(x)))] —a,

ne(cq, ..., Cpp) =
S " Py y~v [}/ — argmax fyr(x) ] — ar
y
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LEARNING CONCEPT MATRICES

Main Idea: learn a matrix of concept vectors € € R¥*™ and use a “concept

completeness score” to measure their completeness:

sgp Pyy~v [y = argyr}iax fy (g(C ¢(x)))] —a,

ne(cq, ..., Cpp) =
S " Py y~v [}/ — argmax fyr(x) ] — ar

y

Then, update C by optimising this score!
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LEARNING CONCEPT MATRICES

Main Idea: learn a matrix of concept vectors € € R¥*™ and use a “concept

completeness score” to measure their completeness:

Looks very scary but is is saying a very simple thing:

‘If | project the hidden state into the concept space

sup Pyyy |y = argmax fr (g(C p(x0))| — a-
” [ y ( )] defined by C, can | faithfully reconstruct it afterwards?”

g

ne(cq,...,Cp) =
f( 1 m) IPx,y~V [y = argrPaxfyr(x) ] - a,
y

Then, update C by optimising this score!
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LEARNING CONCEPT MATRICES

Main Idea: learn a matrix of concept vectors € € R¥*™ and use a “concept

completeness score” to measure their completeness:

Looks very scary but is is saying a very simple thing:

‘If | project the hidden state into the concept space

sup Pyyy |y = argmax fr (g(C p(x0))| — a-
” [ y ( )] defined by C, can | faithfully reconstruct it afterwards?”

g

ne(cq, ..., cp) =
Fi m Py y~v [y = argrPaxfyr(x) ] — a,
y

It measures "faithfulness” by looking at
o _ the DNN's accuracy when the hidden
Then, update C by optlmlsmg this score! layer is replaced by its reconstruction!
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COMPLETENESS VIA RECONSTRUCTION

We define a concept set's “completeness score” w.rt.DNN y(x)as:

sup AcC(y )~ (f (g(C CID(x))) , y) — Acc(yy)~p(random label, y)
g

C tC l t , 0 =
onceptCompleteness(cq Cm) Accixy)~p(f(P(x), ¥) — Acc(yy)~p(random label, y)

Where:

1 C=]cq,Cqy,,Cp]" is the matrix of concept vectors = this is the set of
concept vectors we are evaluating!

2. D is our testing dataset
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COMPLETENESS VIA RECONSTRUCTION

\
. ' ( " | a“
We define a concept set's “completeness score \OO\A

) — Acc(yy)~p(random label, y)

C(x,y)~p(random label, y)

ﬂO‘ ‘.\(\e
1. C

— [C1) cZ; '”)cm]T iS ‘ th|5 iS the Set Of

concept vectors we are

2. D is our testing dataset
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COMPLETENESS VIA RECONSTRUCTION

We define a concept set's “completeness score” w.r.t. DNN ¢(x) as:

Can we learn a model g that can reconstruct the hidden layer from the concept scores?
A
[ \
sup AcC(y )~ (f (g(C CID(x))), y) — Acc(yy)~p(random label, y)
g

C tC l t AR =
onceptCompleteness(cy, -+, €m) Accy)~p(f(P(x), ¥) — Acc(yy)~p(random label, y)
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COMPLETENESS VIA RECONSTRUCTION

We define a concept set's “completeness score” w.r.t. DNN ¢(x) as:

Can we learn a model g that can reconstruct the hidden layer from the concept scores?
A
[ \
sup AcC(y )~ (f (g(C CID(x))), y) — Acc(yy)~p(random label, y)
g

C tC l t AR =
onceptCompleteness(cy, -+, €m) Accy)~p(f(P(x), ¥) — Acc(yy)~p(random label, y)
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COMPLETENESS VIA RECONSTRUCTION

We define a concept set's “completeness score” w.r.t. DNN ¢(x) as:

sup AcC(x )~ (f (g(C CD(x))) , y) — AccC(y,y)~p(random label, y)
g

onceptLomple eneSS(Cl, ,Cm) ACC(x,y)Q)(f((D(x); y) —Acc(x,y)%)(random label, }I)

Let's learn a set of concept vectors that maximises this metric!
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COMPLETENESS-AWARE CONCEPT EXTRACTION

We want to learn k concept vectors € € R*¥*™ such that:

1. Each vector represents a distinct concept direction

2. When a hidden layer of the input DNN is projected into the concept space,

their resulting score preserves all the information needed to reconstruct
the hidden layer.
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COMPLETENESS-AWARE CONCEPT EXTRACTION
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COMPLETENESS-AWARE CONCEPT EXTRACTION
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COMPLETENESS-AWARE CONCEPT EXTRACTION
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Step 1: project the DNN's hidden layer into the concept space



COMPLETENESS-AWARE CONCEPT EXTRACTION
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COMPLETENESS-AWARE CONCEPT EXTRACTION
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Step 3: pass the concepts scores to a learnable model g(?) = h that aims to reconstruct Tl from's 84



COMPLETENESS-AWARE CONCEPT EXTRACTION
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Step 4: use h as the reconstructed hidden layer and predict an output class using

the rest of the DNN



CONCEPT DIVERSITY AND COHERENCE

CCE further encourages discovered concepts to be:

1. Coherent: similar samples should remain close in concept-space

D1 et 2(%a) \, Zirk C " C
mK * m(m—1)

R(c) = A\
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CONCEPT DIVERSITY AND COHERENCE

CCE further encourages discovered concepts to be:

1.

2.

Coherent: similar samples should remain close in concept-space

Diverse: concept vectors should be as distinct from each other as possible

D1 Der,, (%) <k [ \, Zirk C " C
mK * m(m—1)

R(c) = M\
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CONCEPT CONTRIBUTIONS

We can assign each concept a score that fairly represents how much they
contributed towards the completeness score

s =Y, U s U e - nis)

Does this look familiar?
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CONCEPT CONTRIBUTIONS

We can assign each concept a score that fairly represents how much they
contributed towards the completeness score

s =Y, U s U e - nis)

These are Shapley Scores (i.e., ConceptSHAP)
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CCE: APPLICATIONS

In vision, CCE can discover meaningful human-understandable concepts:

Squirrel Rabbit Bob Cat
Conce t46 0.0035

Conce t8 0.0140

' Conce t7 0. 066

.i'
, \L

Conce &5 G i 8 0031

[
-
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CCE: APPLICATIONS

And it can be applied to other data modalities like text!

Table 2: The 4 discovered concepts and some nearest neighbors along with the most frequent words that appear in
top-500 nearest neighbors.

Concept Nearest Neighbors Frequent words ConceptSHAP
poorly constructed what comes across as interesting 1s the worst (168) ever (69) movie (61) seen (55)
1 wasting my time with a comment but this movie film (50) awful (42) time(40) waste (34) 0.280
awful in my opinion there were <UNK> and the poorly (26) movies (24) films (18) long (17)
normally 1t would earn at least 2 or 3 not (58) movie (39) make (25) too (23)
2 <UNK> <UNK> is just too dumb to be called film (22) even (19) like (18) 2 (16) 0.306
i feel like i was ripped oft and hollywood never { 14) minutes (13) 1 (12) doesn’t (11)
remember awaiting return of the jedi with almost <UNK> movies (19) like (18) see (16) movie (15)
3 better than most sequels for tv movies i hate love (15) good (12) character (11) life (11) 0.174
male because marie has a crush on her attractive little (10) ever (9) watch (9) first (9)
new <UNK> <UNK:> via <UNK> <UNK: with absolutely hilarious excellent (50) film (25) perfectly (19) wonderful (19)
4 homosexual and an italian clown <UNK:> is an entertaining perfect (16) hilarious (15) best (13) fun (12) 0.141

stephen <UNK> on the vampire <UNK> as a masterpiece highly (11) movie (11) brilliant (9) old (9)
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QUESTIONS?
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