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WHAT DOES IT MEAN TO BE LOCAL?

• Central assumption in local explainability: While 

the model may be complex globally, it is probably 

way less complex locally

• Locality refers to the vicinity of a particular 

sample for which we seek an explanation

• Local explanations vary for each sample despite 

being based on the same complex model
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Image taken from: Ribeiro, Marco Tulio, Sameer Singh, and Carlos 
Guestrin. " Why should I trust you?" Explaining the predictions of any 
classifier." Proceedings of the 22nd ACM SIGKDD international 
conference on knowledge discovery and data mining. 2016.



EXPLAINING A SAMPLE ONE FEATURE AT A 

TIME

• Ask a child why       is an apple?

• It’s round

• It’s red

• … 

• Common for humans to  explain 

things based on features

round

round

oval

heart

purple

red

small

yellow

red

medium

medium

small

blueberry

apple

banana

strawberry

shape colour size fruit type

5



We want: a sense of which features were most relevant for the prediction of the model!

This is called feature attribution or feature importance 
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FEATURE AT TRIBUTION
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DIFFERENT T YPES OF EXPLANATIONS
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Feature Attribution:

• SHAP



HOW TO COMPUTE FEATURE IMPORTANCE?

We can think of the model’s prediction as a “collaborative game” where:

1. Each feature is a player
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HOW TO COMPUTE FEATURE IMPORTANCE?

We can think of the model’s prediction as a “collaborative game” where:
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2. All players cooperate to produce the observed output of the model

3. The model’s output is a reward to be distributed across all players
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HOW TO COMPUTE FEATURE IMPORTANCE?

We can think of the model’s prediction as a “collaborative game” where:

1. Each feature is a player 

2. All players cooperate to produce the observed output of the model

3. The model’s output is a reward to be distributed across all players

We want to know how to “fairly” distribute this reward to players based on their contribution

12Prob Accepted: 0.8
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PREDICTION AS A GAME
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Take a second to think about how you 
would go about doing this…



PREDICTION AS A GAME
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Take a second to think about how you 
would go about doing this…

1. What does it even mean to be fair?

All rewards should add up to exactly the model’s 
output (but rewards can be negative!)

Interchangeable players should get equal 
rewards

”Null” player should get no reward



PREDICTION AS A GAME
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Take a second to think about how you 
would go about doing this…

2. How do we account for interactions?



PREDICTION AS A GAME
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Take a second to think about how you 
would go about doing this…

2. How do we account for interactions?

Pub

Ringo’s House Paul’s House John’s House



SHAPLEY SCORES

A score that fairly assigns credit across all players/features by averaging marginal 

contribution of a feature across all possible coalitions
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𝜙𝑖 =  ෍

𝑆⊆𝐹\{𝑖}

𝑆 ! 𝐹 − 𝑆 − 1 !

𝐹 !
 [𝑓𝑆∪ 𝑖 𝑥𝑆∪ 𝑖 − 𝑓𝑆(𝑥𝑆)]

𝐹: the set of all features

𝑓𝑆∪{𝑖}: the model trained with 𝑖 present

𝑓𝑆: the model trained with 𝑖 withheld

𝑥𝑆: the values of input features in subset S 
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SHAPLEY SCORES

All this equation says is that we compute a feature’s importance by marginalising over its 

contributions across all possible subsets of features
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SHAPLEY SCORES

All this equation says is that we compute a feature’s importance by marginalizing over its 

contributions across all possible subsets of features
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ENTER SHAP

Shapley Additive exPlanation (SHAP) [1] efficiently estimates Shapley scores by looking at 

how a model’s output deviates from its mean one feature at a time

To understand this, let 𝑓 𝑥  be our credit card predictor. Consider its output on a new sample:

21[1] Lundberg, Scott M., and Su-In Lee. "A unified approach to interpreting model predictions." Advances in neural information processing systems 30 (2017).

𝑓 = 0.8



ENTER SHAP

SHAP distributes credit for the output by assigning a score to each feature that indicates how 

much on average that feature’s value caused the function to deviate from its mean:
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𝐸 𝑓 𝑥  = 23, = 40k,  = 4] =  0.8

ENTER SHAP

SHAP distributes credit for the output by assigning a score to each feature that indicates how 

much on average that feature’s value caused the function to deviate from its mean:
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ENTER SHAP

SHAP distributes credit for the output by assigning a score to each feature that indicates how 

much on average that feature’s value caused the function to deviate from its mean:

26

𝑓 𝑥 = 0 𝑓 𝑥 = 10.50.25 0.75

𝐸 𝑓 𝑥 = 0. 3

−0.1

+0.2 +0.4

𝑓 𝑥 = 0. 8 → Accepted!



SHAP VARIANTS

Details of how SHAP approximates Shapley values efficiently depends on the model:
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LinearSHAP TreeSHAP DeepSHAP KernelSHAP

Exact Approximation



SHAP LIBRARY

SHAP has an amazing open source library which allows you to explain any black-box model 

and explore its behaviour using all sorts of visualisations!

28https://shap.readthedocs.io/en/latest/

Taken from O’Sullivan at towardsdatascience.com/introduction-to-shap-with-python-d27edc23c454



ONE FRAMEWORK TO RULE THEM ALL

Not only is SHAP very useful but different instantiations of how it selects features and 

estimates its Shapley values allow it to generalize enough to cover 7 known methods!
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SHAP
LIME

Shapley 
Regression 

Values

DeepLIFT Shapley 
Sampling

Path 
Explanations

QII

Relevance 
Propagation

[Lundberg, Scott M., and Su-In Lee. "A unified approach to interpreting model predictions." Advances in neural information processing systems 30 (2017).



DIFFERENT T YPES OF EXPLANATIONS
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EXPLAINING WITH VISUALISATIONS

• Perturbation-based methods such as SHAP manipulate parts of the input to generate 

explanation

• They rely on simplicity assumption (e.g., linearity) of local decision boundaries and can 

also be computationally expensive due to local model creation

31

Gradient-based feature 
importance (saliency map)

Perturbation-based feature 
importance

Faster



EXPLAINING WITH VISUALISATIONS

• Perturbation-based methods such as SHAP manipulate parts of the input to generate 

explanation

• They rely on simplicity assumption (e.g., linearity) of local decision boundaries and can 

also be computationally expensive due to local model creation
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Gradient-based feature 
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Perturbation-based feature 
importance

Locality 
Assumption
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Saliency Maps:

• Vanilla Gradient

• SmoothGrad

• Grad-CAM



WHY TO CARE ABOUT THE GRADIENT AGAIN?

• Get some samples and do a forward pass through 

the network and calculate predictions and loss

• Calculate gradients of the loss  for all parameters 

of the network using back propagation

• The partial derivatives in gradient show how much 

each parameter needs to change to minimize loss, 

so the parameters are tweaked accordingly 

34

Image taken from: https://courses.cs.washington.edu/courses/csep590b/22sp/files/lectures/lecture4.pdf



WHY TO CARE ABOUT THE GRADIENT AGAIN?

• In gradient-based explanation we use 

backpropogation to quantify feature 

importance: gradients of the predictions 

(instead of loss) are calculated w.r.t. 

inputs (instead of model parameters)

• Now the partial derivatives 

represent sensitivity of output to 

input change

35

Images taken from: https://courses.cs.washington.edu/courses/csep590b/22sp/files/lectures/lecture4.pdf



SALIENCY: FORMULATION AND APPLICATION

Vanilla gradient [1]: for an input 𝑥 and label 𝑦, we calculate the gradient of the prediction 

𝑓𝑦 𝑥  w.r.t. input features (pixels): 
𝜕𝑓𝑦

𝜕𝑥𝑖
𝑥
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Debugging in image classification: right for the wrong reason in safety critical domains

X-ray Manufacturing 
Artifact

[1] Simonyan, Karen, Andrea Vedaldi, and Andrew Zisserman. "Deep inside convolutional networks: Visualising image classification models and saliency maps." arXiv preprint 
arXiv:1312.6034 (2013).
Image adapted from: DeGrave, Alex J., Joseph D. Janizek, and Su-In Lee. "AI for radiographic COVID-19 detection selects shortcuts over signal." Nature Machine Intelligence 3.7 (2021): 610-
619.



PROBLEM WITH VANILLA GRADIENT:  

• ReLU saturation problem: inputs that contributed to 

the output negatively may be disregarded and their 

attribution may be concealed

• There is also the problem of noisy gradient and 

saliency maps not being sharp enough

• These problem has given rise to a large family of 

alternative gradient-based methods

37
Image adapted from: Nielsen, Ian E., et al. "Robust explainability: A tutorial on gradient-based attribution methods for deep neural networks." IEEE Signal Processing Magazine 39.4 (2022): 
73-84.
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Saliency Maps:

• Vanilla Gradient

• SmoothGrad

• Grad-CAM



SMOOTHGRAD I

Intuition: the main idea behind SmoothGrad [1] is to remove noise by adding noise!

39

Formulation:

• For an image of interest we create multiple 

versions by adding noise

• For each version we get the saliency map

• We average over all of them

[1] Smilkov, Daniel, et al. “SmoothGrad: removing noise by adding noise.” arXiv preprint arXiv:1706.03825 (2017).

𝑀𝑐 𝑥 =
𝜕𝑓𝑐(𝑥)

𝜕𝑥

෡𝑀𝑐 𝑥 =
1

𝑛
෍

1

𝑛

𝑀𝑐(𝑥 + 𝒩 0, 𝜎2 )



SMOOTHGRAD EXAMPLE

40[1] Smilkov, Daniel, et al. “SmoothGrad: removing noise by adding noise.” arXiv preprint arXiv:1706.03825 (2017).
Image taken from [1]

𝑛 copies

0% noise

𝑛 copies

10% noise

𝒩 0, 𝜎2

0.1 <
𝜎

𝑥𝑚𝑎𝑥  − 𝑥𝑚𝑖𝑛
< 0.2

𝑛 = 50



SMOOTHGRAD II

41

Image adapted from Nielsen, Ian E., et al. 
"Robust explainability: A tutorial on 
gradient-based attribution methods for 
deep neural networks." IEEE Signal 
Processing Magazine 39.4 (2022): 73-84.

This is improvement!

But we are still highlighting 
importance at pixel level

Can we improve further?

From pixel-based feature 
importance to important 
semantic features



QUESTIONS?



PAPER DISTRIBUTION TIME!

We will have two student paper presentations per lecture
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PAPER DISTRIBUTION TIME!

How many accepted NeurIPS papers had “Language 

Model” in their titles in 2024?

(Hint: there were a total of 4540 papers accepted)
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PAPER DISTRIBUTION TIME!

How many accepted NeurIPS papers had “Language 

Model” in their titles in 2024?

(Hint: there were a total of 4540 papers accepted)

Answer: 391
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PAPER DISTRIBUTION TIME!

Paper 1: Ribeiro et al. "Anchors: High-precision model-agnostic explanations." AAAI 2018.

Paper 2: Sundararajan et al. "Axiomatic attribution for deep networks." ICML 2017.

46
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