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WHO WE ARE
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Machine learning is increasingly getting intertwined with our day-to-day experience:
• speech, medical diagnosis, credit risk, screening CVs, content recommendations, autonomous vehicles, 

law, search engines, chatbots, image generation… 

Often ML models are black-box.

Self-driving cars
(e.g., Waymo, Tesla)

Court Rulings
(e.g., COMPAS) Healthcare

(e.g., Phillips Machines)

WHEN MACHINES MEET THE REAL-WORLD
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ChatBots
(e.g., ChatGPT, Gemini)



Things CAN and WILL go south when using black-box models in high-stakes tasks.

WHY IS EXPLAINABILIT Y IMPORTANT?

DNNs in computer-aided mammography focused mostly on healthy tissue rather than tumour!

[1] Adapted from Barnett et al. “A case-based interpretable deep learning model for classification of mass lesions in digital mammography.“ Nature Machine Intelligence (2021).
[2] Angwin, Julia, et al. "Machine bias." Ethics of Data and Analytics. Auerbach Publications, 2016. 254-264.
[3] Flores, Anthony W., Kristin Bechtel, and Christopher T. Lowenkamp. "False positives, false negatives, and false analyses: A rejoinder to machine bias: There's software used across the country to predict future criminals. and it's 
biased against blacks." Fed. Probation 80 (2016): 38.

VS

ProPublica claims black-box COMPAS is racially biased Further studies show that the analysis might’ve been mistaken!
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WHY IS EXPLAINABILITY IMPORTANT?
The list keeps going on and on…
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https://www.telegraph.co.uk/technology/2018/07/27/ibm-watson-ai-criticised-giving-unsafe-cancer-treatment-advice/
https://www.nytimes.com/2020/06/24/technology/facial-recognition-arrest.html
https://www.aclu.org/news/womens-rights/why-amazons-automated-hiring-tool-discriminated-against
https://www.technologyreview.com/2020/07/17/1005396/predictive-policing-algorithms-racist-dismantled-machine-learning-bias-criminal-justice/



WHO CARES ABOUT EXPLAINABILIT Y?
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Academia

Number of XAI Papers Published

Co
un

ts

Jacovi, Alon. "Trends in explainable AI (XAI) literature." Medium (2023).



(EU Horizon Program)

WHO CARES ABOUT EXPLAINABILIT Y?
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Industry

The State of AI in 2024 (McKinsey)

(DARPA 2016)

Academia



WHO CARES ABOUT EXPLAINABILIT Y?
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The Public



©DARPA

EXPLAINABLE WHAT?
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©DARPA

EXPLAINABLE WHAT?
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©DARPA

EXPLAINABLE WHAT?
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©DARPA

EXPLAINABLE WHAT?
Types of XAI questions:

• What does the prediction mean?

• How did the model make a 
prediction?

• Which features contributed to a 
certain prediction and how?

• How can a model learn or select 
features that are the most 
interpretable or informative?

• How much does each sample 
contribute to model training?
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Verify systems

©Reuters

Debug and debias predictions

Improve models

©Samek, Binder, Tutoria l on Interpretable ML, MICCAI ’18 

EXPLAINABILIT Y GIVES WHAT?
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Knowledge Discovery

Strategy Discovery
(Schut et al., 2023)

Theorem Discovery
(Davies et al., 2021)

SHAP
(Lundberg et al., 2017)



• Competence: XAI for improving/debugging 
models

• Fairness: XAI for removing unwanted bias

• Safety: XAI for making safer decisions

• Usability: XAI for actionable decision making

• Human-AI collaboration: XAI for better control 
and user interaction

• Accountability: XAI for enabling documentation 
and governance

• Privacy: XAI to preserve privacy

Legislation: anti-discrimination laws, GDPR 
(Article 22), EU AI Act, USA AI Bill of Rights, etc.

EXPLAINABILIT Y GIVES A FOUNDATION FOR 
RESPONSIBLE AI

General Data Protection Regulations (GDPR, 2016):
• “The data subject shall have the right not to be subject 

to a decision based solely on automated processing, 
including profiling,…” (Art. 22)

• The data subject has the right to “meaningful 
information about the logic involved” in the decision. 
(Art. 13 and 15)

17

EU AI Act (2024):
• “Any affected person subject to a decision which is 

taken by.. a high-risk AI system … shall have the right 
to obtain from the deployer clear and meaningful 
explanations (Art. 86)



EXAMPLE: DECISION TREES

Model is interpretable, because 
prediction can be explained with a rule

Explanation:

If a passenger was male and 
under 9.5 years of age and 
there were 3 or fewer members 

in their family, then there 
was an 89% chance that they 

survived.

[1] Diagram inspired by “Survival of passengers on the Titanic.” Wikimedia Commons 2022.

“Women and children first”
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EXAMPLE: DEEP NEURAL NET WORKS

• Deep Neural Nets (DNNs) are “black-box” models

• Predictions can be explained mathematically

• But their evaluation is highly non—linear, so it is 
difficult to understand what factors determined a 
prediction

• Even more complicated with modern architectures 
(hundreds of layers + attention + convolutions + 
normalisation layers + etc…)

• Explanation: current approaches explain some of 
these factors in terms of

• Data
• Important features, combinations of features
• Rules from approximations of DNNs
• Influential examples, counterexamples

[1]  Michael A. Nielsen, "Neural Networks and Deep Learning", Determination Press, 2015
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WHAT THIS MODULE IS ABOUT

• Definition of an explanation: what does it mean to explain a model?

• Explainability methods for black-box models: we focus on deep neural networks, although some 
methods we will discuss are applicable to other ML models

• Taxonomy of XAI approaches: how is the XAI field divided? What are its active research areas?

• Survey of XAI methods: Feature importance, concept-based methods, prototypical explanations, self-
explaining DNNs, influence functions, mechanistic interpretability
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WHAT THIS MODULE IS NOT ABOUT

XAI tackles many areas, but we do not cover them in this module:

• ”Traditional” inherently interpretable models (i.e., non-DNN interpretable models)

• Bias and fairness of data or decisions: is the prediction based on biased features?

• Privacy: how is data processed, is it anonymised for training?

• Transparency: can we inspect the way decisions are made?

• Planning: which actions are responsible for a plan?
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ROUGH ROADMAP FOR NEXT FEW WEEKS
Format 1. Lectures: Fridays in weeks 1, 2, 3, 5, 7 in LT2

2. Practicals in lab (hands-on of XAI methods and exercises): 
Fri week 4 in SW02 2-4pm, Tue week 6 in SW02 3-5pm

3. Presentations: Fridays in weeks 2, 3, 5, 7, 8 in LT2

• Overview and taxonomy of XAI
• Feature attribution methods
• Saliency methods
• Concept-based explainability
• Self-explaining architectures

✓ 10% Jupyter practical 1 due on 24 February 2025 2pm
✓ 10% Jupyter practical 2 due on 11 March 2025 2pm
✓ 10% Paper presentation
✓ 70% Mini project (implement, modify, experiment, combine
             approach from a research paper) due on 28 March 2025 4pm
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https://www.cl.cam.ac.uk/teaching/2425/L193/

Topics Covered (focus 
on XAI for Deep Neural 
Networks)

Assessment

Course web page

On Moodle via course web page Submission

https://www.cl.cam.ac.uk/teaching/2425/L193/


READING MATERIAL

No official textbook, but some resources:
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“Interpretable Machine Learning” Christoph Molnar
https://christophm.github.io/interpretable-ml-book/

List of Compiled Resources
https://t.ly/Zmfze

https://christophm.github.io/interpretable-ml-book/
https://t.ly/Zmfze


OVERVIEW OF THE 
WORLD OF XAI



SOME DEFINITIONS

• Confusing nomenclature: explainable / interpretable / transparent  models
• Interpretability: the ability to explain or provide the meaning in understandable 

terms to humans

• Explainability: a notion of explanation as an interface between humans and a 
decision maker that is both an accurate proxy of the decision maker and 
comprehensible to humans

• Transparency: a model is transparent if by itself it is understandable. 
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A TAXONOMY FOR ML MODELS

• Inherently explainable/glass box models:
• Linear models

• Decision trees

• Rule-based models

• Black-box models:
• Deep neural networks

• Ensemble models

Accuracy vs Explainability 26

©Samek, Binder, Tutoria l on Interpretable ML, MICCAI ’18 



A TAXONOMY FOR XAI METHODS FOR 
BLACK-BOX MODELS
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• When is explanation extracted: in-model (inherently interpretable), post-hoc

• Does it explain a particular sample or the whole model: local      , global      , both

• Does it depend on a particular model: model-specific       , model-agnostic

• Does it explain the model or an approximation of the model: visualisation, surrogate



DIFFERENT T YPES OF EXPLANATIONS

29



DIFFERENT WAYS OF PRODUCING THOSE 
EXPLANATIONS

Explanation modes:

• Analytic statement: natural language descriptions of elements 
and context that support the decision

• Visualisations: highlight parts of data that support the decisions 
and allow user to make their own understanding

• Cases: give typical/illustrative examples that support the 
decision

• Rejections or alternative choice: counterfactuals or common 
misconceptions that argue against the alternative decisions
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GLOBAL MODEL 
AGNOSTIC

INTERPRETATION
METHODS



MOTIVATION
• Explaining the average behaviour of a model

• Understanding and debugging the general mechanism of the model
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How is attempted in practice

Global 
Feature 

Importance 

Knowledge 
Distillation

Prototypical 
Examples



KNOWLEDGE 
DISTILLATION



KNOWLEDGE DISTILLATION I
Intuition: an interpretable model is trained to approximate the predictions of a black model and 
then used to explain its predictions
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Step 1: train a black 
box model on some 
data 𝑥 with labels 𝑦 

𝑥, 𝑦 ො𝑦

Step 2: train an 
interpretable model 
on 𝑥 and ො𝑦

𝑥, ො𝑦 𝑦∗ 

Step 3: check the 
alignment of ො𝑦 
and 𝑦∗ 

𝑦∗ ො𝑦

Step 4: use the 
well-aligned 
surrogate for 
interpreting ො𝑦  



SURROGATE ALIGNMENT
𝑅2 measures the percentage of variance that is captured by the surrogate model

 𝑅2= 1 − 𝑆𝑆𝐸
𝑆𝑆𝑇

= 1 − σ𝑖=1
𝑛 𝑦𝑖

∗− ෞ𝑦𝑖
2

σ𝑖=1
𝑛  ෞ𝑦𝑖 − തො𝑦 2      
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• 𝑆𝑆𝐸: sum of squares error
• 𝑆𝑆𝑇 : sum of squares total
• 𝑦𝑖

∗:surrogate model prediction for 
instance 𝑖

• ෝ𝑦𝑖: black-box model prediction for 
instance 𝑖

• തො𝑦: mean of black-box model 
predictions

𝑅2 close to 1: surrogate is great
𝑅2 close to 0: surrogate is not good enough



SURROGATE EXAMPLES
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ECLAIRE: Rule 
extraction from pre-
trained models

Soft DTs: Training models 
such that their decisions 
boundaries can be 
approximated with simple 
decision trees

Tree regularisation

L2 regularisation



KNOWLEDGE DISTILLATION II
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If we can’t approximate globally, can we look at features 
globally important or can we approximate locally?

𝑥, 𝑦 ො𝑦
ො𝑦 𝑦

𝑦∗ ො𝑦𝑥, ො𝑦 𝑦∗ 

Ideal Scenario

𝑦∗𝑦

Knowledge 
distillation



GLOBAL 
PERTURBATION 

METHODS



GLOBAL PERTURBATION METHODS
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PARTIAL DEPENDENCE PLOT (PDP)
PDP [1] measures the marginal effect of a feature on the prediction of the model while holding 
other features constant. 
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[1] Friedman, Jerome H. “Greedy function approximation: A gradient boosting machine.” Annals of statistics (2001): 1189-1232

Step 1: select a feature
Savings

Step 2: define a grid over 
feature values

Step 3: replace all values of 
the feature with the grid value 

Step 4: calculate and average 
the prediction of the target 

Age

Savings
Credit Card 
Application 

Model

Number of Previous 
Accounts



PDP EXAMPLE
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Age

Number of Previous 
Accounts

Savings
Credit Card 
Application 

Model



PDP-BASED FEATURE IMPORTANCE
Intuition: the more the PDP varies the more important the feature is [1]
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Formulation: How to measure flatness/variability? 

[1] Greenwell, Brandon M., Bradley C. Boehmke, and Andrew J. McCarthy. “A simple and effective model-based variable importance measure.” arXiv preprint arXiv:1805.04755 (2018)

Sample standard deviation for continuous features and the range divided by four for categorical ones

𝐼 𝑥𝑖 =

1
𝑘 − 1


𝑘=1

𝐾

ഥ𝑓𝑖 𝑥𝑖
(𝑘) −

1
𝑘


𝑘=1

𝐾

ഥ𝑓𝑖 𝑥𝑖
(𝑘)

2

𝑥𝑖 is continous

𝑚𝑎𝑥𝑘 ഥ𝑓𝑖 𝑥𝑖
(𝑘) − 𝑚𝑖𝑛𝑘 ഥ𝑓𝑖 𝑥𝑖

(𝑘) /4 𝑥𝑖 is categorical



PDP SHORTCOMINGS

• Interactable for high dimensional data

• Does not factor in feature interactions

• It is defined over unique values of features, regardless 
of their frequency
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[1] Apley, Daniel W., and Jingyu Zhu. “Visualizing the effects of predictor variables in black box supervised learning models.” Journal of the Royal Statistical Society: Series B (Statistical 
Methodology) 82.4 (2020): 1059-1086
[2] Fisher, Aaron, Cynthia Rudin, and Francesca Dominici. “All models are wrong, but many are useful: Learning a variable’s i mportance by studying an entire class of prediction models 
simultaneously.” http://arxiv.org/abs/1801.01489 (2018).

• Any alternatives? Look up Accumulated Local Effects 
(ALE) [1] plots and Permutation Feature Importance [2]

http://arxiv.org/abs/1801.01489


QUESTIONS?

Let's have a little break...


