STLC equations

take the form $\Gamma \vdash s = t : A$ where $\Gamma \vdash s : A$ and $\Gamma \vdash t : A$ are provable.

Such an equation is satisfied by the semantics in a ccc if $M[\Gamma \vdash s : A]$ and $M[\Gamma \vdash t : A]$ are equal C-morphisms $M[\Gamma] \rightarrow M[A]$.

Qu: which equations are always satisfied in any ccc?

STLC equations

take the form $\Gamma \vdash s = t : A$ where $\Gamma \vdash s : A$ and $\Gamma \vdash t : A$ are provable.

Such an equation is satisfied by the semantics in a ccc if $M[\Gamma \vdash s : A]$ and $M[\Gamma \vdash t : A]$ are equal C-morphisms $M[\Gamma] \rightarrow M[A]$.

Qu: which equations are always satisfied in any ccc? Ans: $(\alpha)\beta\eta$ -equivalence — to define this, first have to define alpha-equivalence, substitution and its semantics.

The names of λ -bound variables should not affect meaning.

E.g. $\lambda f : A \to B$. $\lambda x : A$. f x should have the same meaning as $\lambda x : A \to B$. $\lambda f : A$. x f.

The names of λ -bound variables should not affect meaning.

E.g. $\lambda f : A \to B$. $\lambda x : A$. f x should have the same meaning as $\lambda x : A \to B$. $\lambda f : A$. x f.

This issue is best dealt with at the level of syntax rather than semantics: from now on we re-define "STLC term" to mean not an abstract syntax tree (generated as described before), but rather an equivalence class of such trees with respect to alpha-equivalence $s =_{\alpha} t$, defined as follows ...

(Alternatively, one can use a "nameless" (de Bruijn) representation of terms.)

$$\frac{1}{c^{A} =_{\alpha} c^{A}} \begin{bmatrix} \frac{1}{x =_{\alpha} x} & \frac{1}{() =_{\alpha} ()} & \frac{s =_{\alpha} s' \quad t =_{\alpha} t'}{(s, t) =_{\alpha} (s', t')} & \frac{t =_{\alpha} t'}{fst t =_{\alpha} fst t'} \\
\frac{1}{snd t =_{\alpha} snd t'} & \frac{s =_{\alpha} s' \quad t =_{\alpha} t'}{s t =_{\alpha} s't'} \\
\frac{1}{st =_{\alpha} (y x') \cdot t'} & y \text{ does not occur in } \{x, x', t, t'\} \\
\frac{1}{st =_{\alpha} (y x') \cdot t'} & y \text{ does not occur in } \{x, x', t, t'\} \\
\frac{1}{st =_{\alpha} (y x') \cdot t'} & y \text{ does not occur in } \{x, x', t, t'\} \\
\frac{1}{st =_{\alpha} (y x') \cdot t'} & y \text{ does not occur in } \{x, x', t, t'\} \\
\frac{1}{st =_{\alpha} (y x') \cdot t'} & y \text{ does not occur in } \{x, x', t, t'\} \\
\frac{1}{st =_{\alpha} (y x') \cdot t'} & y \text{ does not occur in } \{x, x', t, t'\} \\
\frac{1}{st =_{\alpha} (y x') \cdot t'} & y \text{ does not occur in } \{x, x', t, t'\} \\
\frac{1}{st =_{\alpha} (y x') \cdot t'} & y \text{ does not occur in } \{x, x', t, t'\} \\
\frac{1}{st =_{\alpha} (y x') \cdot t'} & y \text{ does not occur in } \{x, x', t, t'\} \\
\frac{1}{st =_{\alpha} (y x') \cdot t'} & y \text{ does not occur in } \{x, x', t, t'\} \\
\frac{1}{st =_{\alpha} (y x') \cdot t'} & y \text{ does not occur in } \{x, x', t, t'\} \\
\frac{1}{st =_{\alpha} (y x') \cdot t'} & y \text{ does not occur in } \{x, x', t, t'\} \\
\frac{1}{st =_{\alpha} (y x') \cdot t'} & y \text{ does not occur in } \{x, x', t, t'\} \\
\frac{1}{st =_{\alpha} (y x') \cdot t'} & y \text{ does not occur in } \{x, x', t, t'\} \\
\frac{1}{st =_{\alpha} (y x') \cdot t'} & y \text{ does not occur in } \{x, x', t, t'\} \\
\frac{1}{st =_{\alpha} (y x') \cdot t'} & y \text{ does not occur in } \{x, x', t, t'\} \\
\frac{1}{st =_{\alpha} (y x') \cdot t'} & y \text{ does not occur in } \{x, x', t, t'\} \\
\frac{1}{st =_{\alpha} (y x') \cdot t'} & y \text{ does not occur in } \{x, x', t, t'\} \\
\frac{1}{st =_{\alpha} (y x') \cdot t'} & y \text{ does not occur in } \{x, x', t, t'\} \\
\frac{1}{st =_{\alpha} (y x') \cdot t'} & y \text{ does not occur in } \{x, x', t, t'\} \\
\frac{1}{st =_{\alpha} (y x') \cdot t'} & y \text{ does not occur in } \{x, x', t, t'\} \\
\frac{1}{st =_{\alpha} (y x') \cdot t'} & y \text{ does not occur in } \{x, x', t, t'\} \\
\frac{1}{st =_{\alpha} (y x') \cdot t'} & y \text{ does not occur in } \{x, x', t, t'\} \\
\frac{1}{st =_{\alpha} (y x') \cdot t'} & y \text{ does not occur in } \{x, x', t, t'\} \\
\frac{1}{st =_{\alpha} (y x') \cdot t'} & y \text{ does not occur in } \{x, x', t, t'\} \\
\frac{1}{st =_{\alpha} (y x') \cdot t'} & y \text{ does not }$$

E.g.

$$\begin{split} \lambda x &: A. x \, x =_{\alpha} \lambda y : A. y \, y \neq_{\alpha} \lambda x : A. x \, y \\ (\lambda y : A. y) \, x =_{\alpha} (\lambda x : A. x) \, x \neq_{\alpha} (\lambda x : A. x) \, y \end{split}$$

Substitution

t[s/x]

= result of replacing all free occurrences of variable xin term t (i.e. those not occurring within the scope of a $\lambda x : A_{-}$ binder) by the term s, alpha-converting λ -bound variables in t to avoid them "capturing" any free variables of t.

E.g. $(\lambda y : A. (y, x))[y/x]$ is $\lambda z : A. (z, y)$ and is not $\lambda y : A. (y, y)$

Substitution

t[s/x]

- = result of replacing all free occurrences of variable xin term t (i.e. those not occurring within the scope of a $\lambda x : A_{-}$ binder) by the term s, alpha-converting λ -bound variables in t to avoid them "capturing" any free variables of t.
- E.g. $(\lambda y : A. (y, x))[y/x]$ is $\lambda z : A. (z, y)$ and is not $\lambda y : A. (y, y)$

The relation t[s/x] = t' can be inductively defined by the following rules ...

Substitution

Semantics of substitution in a ccc

Substitution Lemma If $\Gamma \vdash s : A$ and $\Gamma, x : A \vdash t : B$ are provable, then so is $\Gamma \vdash t[s/x] : B$.

Substitution Theorem If $\Gamma \vdash s : A$ and $\Gamma, x : A \vdash t : B$ are provable, then in any ccc the following diagram commutes:

STLC equations

take the form $\Gamma \vdash s = t : A$ where $\Gamma \vdash s : A$ and $\Gamma \vdash t : A$ are provable.

Such an equation is satisfied by the semantics in a ccc if $M[\Gamma \vdash s : A]$ and $M[\Gamma \vdash t : A]$ are equal C-morphisms $M[\Gamma] \rightarrow M[A]$.

Qu: which equations are always satisfied in any ccc? Ans: $\beta\eta$ -equivalence...

The relation $\Gamma \vdash s =_{\beta\eta} t : A$ (where Γ ranges over typing environments, *s* and *t* over terms, and *A* over types) is inductively defined by the following rules:

The relation $\Gamma \vdash s =_{\beta\eta} t : A$ (where Γ ranges over typing environments, *s* and *t* over terms, and *A* over types) is inductively defined by the following rules:

• β -conversions

 $\frac{\Gamma, x : A \vdash t : B \qquad \Gamma \vdash s : A}{\Gamma \vdash (\lambda x : A, t)s =_{\beta\eta} t[s/x] : B} \qquad \frac{\Gamma \vdash s : A \qquad \Gamma \vdash t : B}{\Gamma \vdash fst(s, t) =_{\beta\eta} s : A}$ $\frac{\Gamma \vdash s : A \qquad \Gamma \vdash t : B}{\Gamma \vdash snd(s, t) =_{\beta\eta} t : B}$

The relation $\Gamma \vdash s =_{\beta\eta} t : A$ (where Γ ranges over typing environments, *s* and *t* over terms, and *A* over types) is inductively defined by the following rules:

- β -conversions
- \blacktriangleright η -conversions

$$\begin{array}{c|c} \hline \Gamma \vdash t : A \to B & x \text{ does not occur in } t \\ \hline \Gamma \vdash t =_{\beta\eta} (\lambda x : A. t x) : A \to B \\ \hline \hline \Gamma \vdash t : A \times B & \\ \hline \Gamma \vdash t =_{\beta\eta} (\texttt{fst } t, \texttt{snd } t) : A \times B & \\ \hline \Gamma \vdash t =_{\beta\eta} () : \texttt{unit} \end{array}$$

The relation $\Gamma \vdash s =_{\beta\eta} t : A$ (where Γ ranges over typing environments, *s* and *t* over terms, and *A* over types) is inductively defined by the following rules:

- β -conversions
- η -conversions
- congruence rules

$$\frac{\Gamma, x : A \vdash t =_{\beta\eta} t' : B}{\Gamma \vdash \lambda x : A. t =_{\beta\eta} \lambda x : A. t' : A \to B}$$

$$\frac{\Gamma \vdash s =_{\beta\eta} s' : A \to B \qquad \Gamma \vdash t =_{\beta\eta} t' : A}{\Gamma \vdash s t =_{\beta\eta} s' t' : B} \text{ etc}$$

The relation $\Gamma \vdash s =_{\beta\eta} t : A$ (where Γ ranges over typing environments, *s* and *t* over terms, and *A* over types) is inductively defined by the following rules:

- β -conversions
- \blacktriangleright η -conversions
- congruence rules

 $=_{\beta\eta} \text{ is reflexive, symmetric and transitive}$ $\frac{\Gamma + t : A}{\Gamma + t =_{\beta\eta} t : A} \frac{\Gamma + s =_{\beta\eta} t : A}{\Gamma + t =_{\beta\eta} s : A}$ $\frac{\Gamma + r =_{\beta\eta} s : A \qquad \Gamma + s =_{\beta\eta} t : A}{\Gamma + r =_{\beta\eta} t : A}$

Soundness Theorem for semantics of STLC in a ccc. If $\Gamma \vdash s =_{\beta\eta} t : A$ is provable, then in any ccc

 $M\llbracket\Gamma \vdash s:A\rrbracket = M\llbracket\Gamma \vdash t:A\rrbracket$

are equal C-morphisms $M\llbracket \Gamma \rrbracket \to M\llbracket A \rrbracket$.

Proof is by induction on the structure of the proof of $\Gamma \vdash s =_{\beta\eta} t : A$. Here we just check the case of β -conversion for functions.

So suppose we have Γ , $x : A \vdash t : B$ and $\Gamma \vdash s : A$. We have to see that

 $M\llbracket\Gamma \vdash (\lambda x : A, t) s : B\rrbracket = M\llbracket\Gamma \vdash t[s/x] : B\rrbracket$

Suppose $M[[\Gamma]] = X$ M[[A]] = Y M[[B]] = Z $M[[\Gamma, x : A \vdash t : B]] = f : X \times Y \rightarrow Z$ $M[[\Gamma \vdash s : A]] = g : X \rightarrow Z$

Then

$$M[\![\Gamma \vdash \lambda x : A. t : A \to B]\!] = \operatorname{cur} f : X \to Z^Y$$

and hence

$$M[\Gamma \vdash (\lambda x : A, t) s : B]]$$

= app $\circ \langle \operatorname{cur} f, g \rangle$
= app $\circ (\operatorname{cur} f \times \operatorname{id}_Y) \circ \langle \operatorname{id}_X, g \rangle$
= $f \circ \langle \operatorname{id}_X, g \rangle$
= $M[\Gamma \vdash t[s/x] : B]]$

since $(a \times b) \circ \langle c, d \rangle = \langle a \circ c, b \circ d \rangle$ by definition of cur fby the <u>Substitution Theorem</u>

as required.

The internal language of a ccc, C

- one ground type for each C-object *X*
- For each X ∈ C, one constant f^X for each
 C-morphism f : 1 → X ("global element" of the object X)

The types and terms of STLC over this language usefully describe constructions on the objects and morphisms of C using its cartesian closed structure, but in an "element-theoretic" way.

For example, ...

Example

In any ccc C, for any $X, Y, Z \in C$ there is an isomorphism $Z^{(X \times Y)} \cong (Z^Y)^X$

Example

In any ccc C, for any $X, Y, Z \in C$ there is an isomorphism $Z^{(X \times Y)} \cong (Z^Y)^X$

which in the internal language of C is described by the terms

 $\diamond \vdash s : ((X \times Y) \to Z) \to (X \to (Y \to Z))$ $\diamond \vdash t : (X \to (Y \to Z)) \to ((X \times Y) \to Z)$

where
$$\begin{cases} s &\triangleq \lambda f : (X \times Y) \to Z. \ \lambda x : X. \ \lambda y : Y. \ f(x, y) \\ t &\triangleq \lambda g : X \to (Y \to Z). \ \lambda z : X \times Y. \ g \ (\texttt{fst } z) \ (\texttt{snd } z) \end{cases} \text{ and}$$

which satisfy
$$\begin{cases} \diamond, f : (X \times Y) \to Z \vdash t(s \ f) =_{\beta\eta} f \\ \diamond, g : X \to (Y \to Z) \vdash s(t \ g) =_{\beta\eta} g \end{cases}$$

Free cartesian closed categories

The Soundness Theorem has a converse-completeness.

In fact for a given set of ground types and typed constants there is a single ccc **F** (the free ccc for that language) with an interpretation function *M* so that $\Gamma \vdash s =_{\beta_n} t : A$ is provable iff $M[\Gamma \vdash s : A] = M[\Gamma \vdash t : A]$ in **F**.

Free cartesian closed categories

The Soundness Theorem has a converse-completeness.

In fact for a given set of ground types and typed constants there is a single ccc **F** (the free ccc for that language) with an interpretation function *M* so that $\Gamma \vdash s = \beta_{\eta} t : A$ is provable iff $M[\Gamma \vdash s : A] = M[\Gamma \vdash t : A]$ in **F**.

- F-objects are the STLC types over the given set of ground types
- ► **F**-morphisms $A \to B$ are equivalence classes of STLC terms *t* satisfying $\diamond \vdash t : A \to B$ (so *t* is a *closed* term—it has no free variables) with respect to the equivalence relation equating *s* and *t* if $\diamond \vdash s =_{\beta\eta} t : A \to B$ is provable.
- identity morphism on A is the equivalence class of $\diamond \vdash \lambda x : A \cdot x : A \rightarrow A$.
- ► composition of a morphism $A \to B$ represented by $\diamond \vdash s : A \to B$ and a morphism $B \to C$ represented by $\diamond \vdash t : B \to C$ is represented by $\diamond \vdash \lambda x : A \cdot t(s x) : A \to C$.

Curry-Howard correspondence

	Туре		
Logic		Theory	
propositions	\leftrightarrow	types	
proofs	\leftrightarrow	terms	

E.g. IPL versus STLC.

Curry-Howard for IPL vs STLC

Proof of $\diamond, \varphi \Rightarrow \psi, \psi \Rightarrow \theta \vdash \varphi \Rightarrow \theta$ in IPL

where $\Phi = \diamond$, $\varphi \Rightarrow \psi$, $\psi \Rightarrow \theta$, φ

Curry-Howard for IPL vs STLC

and a corresponding STLC term

where $\Phi = \diamond, y : \varphi \Rightarrow \psi, z : \psi \Rightarrow \theta, x : \varphi$

Curry-Howard-Lawvere/Lambek correspondence

Logic	Type Theory		Category Theory	
propositions	\leftrightarrow	types	\leftrightarrow	objects
proofs	\leftrightarrow	terms	\leftrightarrow	morphisms

E.g. IPL versus STLC versus CCCs

Curry-Howard-Lawvere/Lambek correspondence

	Туре		Category	
Logic		Theory		Theory
propositions	\leftrightarrow	types	\leftrightarrow	objects
proofs	\leftrightarrow	terms	\leftrightarrow	morphisms

E.g. IPL versus STLC versus CCCs

These correspondences can be made into category-theoretic equivalences—we first need to define the notions of functor and natural transformation in order to define the notion of equivalence of categories.

Lecture 10

Functors

are the appropriate notion of morphism between categories

Given categories C and D, a functor $F : C \rightarrow D$ is specified by:

- a function $obj C \rightarrow obj D$ whose value at *X* is written FX
- ► for all $X, Y \in \mathbf{C}$, a function $\mathbf{C}(X, Y) \to \mathbf{D}(FX, FY)$ whose value at $f : X \to Y$ is written $Ff : FX \to FY$

and which is required to preserve composition and identity morphisms:

$$\begin{array}{rcl} F(g \circ f) &=& F \, g \circ F \, f \\ F(\operatorname{id}_X) &=& \operatorname{id}_{FX} \end{array}$$