Non-example of a ccc

The category Mon of monoids has a terminal object and binary products, but is <u>not</u> a ccc

because of the following bijections between sets, where 1 denotes a one-element set and the corresponding one-element monoid:

Non-example of a ccc

The category Mon of monoids has a terminal object and binary products, but is <u>not</u> a ccc

because of the following bijections between sets, where 1 denotes a one-element set and the corresponding one-element monoid:

 $\mathcal{P}(X) \cong \operatorname{Set}(X, \mathbb{Z}_2)$ $\cong \operatorname{Mon}(\operatorname{List} X, \mathbb{Z}_2)$ $\cong \operatorname{Mon}(1 \times \operatorname{List} X, \mathbb{Z}_2)$

Since the one-element monoid is initial in Mon, for any $M \in Mon$, we have $Mon(1, M) \cong 1$ and hence

List $X \Rightarrow \mathbb{Z}_2$ exists in Mon iff $\mathscr{P}(X) \cong 1$ iff X = 0

Btw, a ccc has a zero object if, and only if, it is trivial (check).

Cartesian closed pre-order

Recall that each preorder $\underline{P} = (P, \sqsubseteq)$ gives a category $\underline{C}_{\underline{P}}$. It is a biccc iff \underline{P} has

- ▶ a greatest element \top : $\forall p \in P, p \sqsubseteq \top$
- ▶ a least element \bot : $\forall p \in P, \bot \sqsubseteq p$
- binary meets $p \land q$: $\forall r \in P, r \sqsubseteq p \land q \Leftrightarrow r \sqsubseteq p \land r \sqsubseteq q$
- ► binary joins $p \lor q$: $\forall r \in P, \ p \lor q \sqsubseteq r \iff p \sqsubseteq r \land q \sqsubseteq r$
- Heyting implications $p \rightarrow q$: $\forall r \in P, \ r \sqsubseteq p \rightarrow q \iff r \land p \sqsubseteq q$

Examples:

- Any Boolean algebra (with $p \rightarrow q = \neg p \lor q$).
- ([0,1], \leq) with $\top = 1, \perp = 0, p \land q = \min\{p,q\},$ $p \lor q = \max\{p,q\}, \text{ and } p \to q = \begin{cases} 1 & \text{if } p \leq q \\ q & \text{if } q$

Intuitionistic Propositional Logic (IPL)

We present it in "natural deduction" style and only consider the fragment with conjunction and implication, with the following syntax:

Formulas of IPL: $\varphi, \psi, \theta, \ldots :=$

p, q, r, \ldots	propositional identifiers
true	truth
$\varphi \& \psi$	conjunction
$\varphi \Rightarrow \psi$	implication

Sequents of IPL: $\Phi ::= \diamond$ empty Φ, φ non-empty

(so sequents are finite lists of formulas)

IPL entailment $\Phi \vdash \varphi$

The intended meaning of $\Phi \vdash \varphi$ is "the conjunction of the formulas in Φ implies the formula φ ". The relation $_\vdash$ _ is inductively generated by the following rules:

For example, if $\Phi = \diamond, \varphi \Rightarrow \psi, \psi \Rightarrow \theta$, then $\Phi \vdash \varphi \Rightarrow \theta$ is provable in IPL, because:

$$\frac{\overline{(\varphi,\varphi\Rightarrow\psi\vdash\varphi\Rightarrow\psi)}(AX)}{\Phi,\varphi\vdash\psi\Rightarrow\theta}(WK) = \frac{\overline{(\varphi,\varphi\Rightarrow\psi\vdash\varphi\Rightarrow\psi)}(WK)}{\Phi,\varphi\vdash\varphi\Rightarrow\psi}(WK) = \frac{\overline{(\varphi,\varphi\vdash\varphi)}(WK)}{\Phi,\varphi\vdash\psi}(AX) = \frac{\Phi,\varphi\vdash\varphi}{\Phi,\varphi\vdash\psi}(AX) = \frac{\Phi,\varphi\vdash\varphi}{\Phi,\varphi\vdash\psi}(AX) = \frac{\Phi,\varphi\vdash\varphi}{\Phi,\varphi\neq\psi}(AX) = \frac{\Phi,\varphi\downarrow\varphi}{\Phi,\varphi\neq\psi}(AX) = \frac{\Phi,\varphi\varphi\varphi}{\Phi,\varphi\neq\psi}(AX) = \frac{\Phi,\varphi\varphi\varphi}{\Phi,\varphi\neq\psi}(AX) = \frac{\Phi,\varphi\varphi\varphi}{\Phi,\varphi\varphi\psi}(AX) = \frac{\Phi,\varphi\varphi\psi}{\Phi,\varphi\varphi\psi}(AX) = \frac{\Phi,\varphi\varphi\varphi}{\Phi,\varphi\varphi\psi}(AX) = \frac{\Phi,\varphi\varphi\varphi}{\Phi,\varphi\varphi\psi}(AX) = \frac{$$

Semantics of IPL in a cartesian closed pre-order (P, \sqsubseteq)

Given a function *M* assigning a meaning to each propositional identifier *p* as an element $M(p) \in P$, we can assign meanings to IPL formula φ and sequents Φ as elements $M[\![\varphi]\!], M[\![\Phi]\!] \in P$ by recursion on their structure:

$$\begin{split} M[\![p]\!] &= M(p) \\ M[\![\texttt{true}]\!] &= \top & \text{greatest element} \\ M[\![\varphi \& \psi]\!] &= M[\![\varphi]\!] \land M[\![\psi]\!] & \text{binary meet} \\ M[\![\varphi \Rightarrow \psi]\!] &= M[\![\varphi]\!] \to M[\![\psi]\!] & \text{Heyting implication} \\ M[\![\diamond]\!] &= \top & \text{greatest element} \\ M[\![\Phi, \varphi]\!] &= M[\![\Phi]\!] \land M[\![\varphi]\!] & \text{binary meet} \end{split}$$

Semantics of IPL in a cartesian closed pre-order (P, \sqsubseteq)

Soundness Theorem. If $\Phi \vdash \varphi$ is provable from the rules of IPL, then $M[\![\Phi]\!] \sqsubseteq M[\![\varphi]\!]$ holds in any cartesian closed pre-order.

Proof. exercise (show that $\{(\Phi, \varphi) \mid M[\![\Phi]\!] \sqsubseteq M[\![\varphi]\!]\}$ is closed under the rules defining IPL entailment and hence contains $\{(\Phi, \varphi) \mid \Phi \vdash \varphi\}$)

Example

Peirce's Law $\diamond \vdash ((\varphi \Rightarrow \psi) \Rightarrow \varphi) \Rightarrow \varphi$ is <u>not</u> provable in IPL.

(whereas the formula $((\varphi \Rightarrow \psi) \Rightarrow \varphi) \Rightarrow \varphi$ is a classical tautology)

Example

Peirce's Law $\diamond \vdash ((\varphi \Rightarrow \psi) \Rightarrow \varphi) \Rightarrow \varphi$ is not provable in IPL.

(whereas the formula $((\varphi \Rightarrow \psi) \Rightarrow \varphi) \Rightarrow \varphi$ is a classical tautology)

For if $\diamond \vdash ((\varphi \Rightarrow \psi) \Rightarrow \varphi) \Rightarrow \varphi$ were provable in IPL, then by the Soundness Theorem we would have $\top = M[\![\diamond]\!] \sqsubseteq M[\![((\varphi \Rightarrow \psi) \Rightarrow \varphi) \Rightarrow \varphi]\!].$

But in the cartesian closed poset ([0, 1], \leq), taking M(p) = 1/2 and M(q) = 0, we get

$$M\llbracket((p \Rightarrow q) \Rightarrow p) \Rightarrow p\rrbracket = ((1/2 \to 0) \to 1/2) \to 1/2$$
$$= (0 \to 1/2) \to 1/2$$
$$= 1 \to 1/2$$
$$= 1/2$$
$$\neq 1$$

Semantics of IPL in a cartesian closed preorder (P, \sqsubseteq)

Completeness Theorem. Given Φ, φ , if for all cartesian closed preorders (P, \sqsubseteq) and all interpretations M of the propositional identifiers as elements of P, it is the case that $M[\![\Phi]\!] \sqsubseteq M[\![\varphi]\!]$ holds in P, then $\Phi \vdash \varphi$ is provable in IPL.

Semantics of IPL in a cartesian closed preorder (P, \sqsubseteq)

Completeness Theorem. Given Φ, φ , if for all cartesian closed preorders (P, \sqsubseteq) and all interpretations M of the propositional identifiers as elements of P, it is the case that $M[\![\Phi]\!] \sqsubseteq M[\![\varphi]\!]$ holds in P, then $\Phi \vdash \varphi$ is provable in IPL.

Proof. Define

 $P \triangleq \{\text{formulas of IPL}\}$ $\varphi \sqsubseteq \psi \triangleq \diamond, \varphi \vdash \psi \text{ is provable in IPL}$

Then one can show that (P, \sqsubseteq) is a cartesian closed preorder. For this preorder, taking *M* to be M(p) = p, one can show that $M[\![\Phi]\!] \sqsubseteq M[\![\varphi]\!]$ holds in *P* iff $\Phi \vdash \varphi$ is provable in IPL.

Two IPL proofs of $\diamond, \varphi \Rightarrow \psi, \psi \Rightarrow \theta \vdash \varphi \Rightarrow \theta$

Two IPL proofs of $\diamond, \varphi \Rightarrow \psi, \psi \Rightarrow \theta \vdash \varphi \Rightarrow \theta$

Why is the first proof simpler than the second one?

FACT: if an IPL sequent $\Phi \vdash \phi$ is provable from the rules, it is provable without using the (CUT) rule.

FACT: if an IPL sequent $\Phi \vdash \phi$ is provable from the rules, it is provable without using the (CUT) rule.

Simply-Typed Lambda Calculus provides a language for describing proofs in IPL and their properties.

Simply-Typed Lambda Calculus (STLC)

Types: *A*, *B*, *C*, . . . ::=

$G, G', G'' \dots$	"ground" types
unit	unit type
$A \times B$	product type
A ightarrow B	function type

Simply-Typed Lambda Calculus (STLC)

Types: *A*, *B*, *C*, . . . ::=

$G, G', G'' \dots$	"ground" types
unit	unit type
$A \times B$	product type
A ightarrow B	function type

Terms: *s*, *t*, *r*, . . . ::=

constants (of given type A)
variable (countably many)
unit value
pair
projections
function abstraction
function application

STLC

Some examples of terms:

- ► $\lambda z : (A \to B) \times (A \to C)$. $\lambda x : A$. ((fst z) x, (snd z) x))(has type $((A \to B) \times (A \to C)) \to (A \to (B \times C)))$
- ► $\lambda z : A \to (B \times C). (\lambda x : A. fst(z x), \lambda y : A. snd(z y))$ (has type $(A \to (B \times C)) \to ((A \to B) \times (A \to C)))$
- ► $\lambda z : A \to (B \times C)$. $\lambda x : A$. ((fst z) x, (snd z) x) (has no type)

 Γ ranges over typing environments

 $\Gamma ::= \diamond \mid \Gamma, x : A$

(so typing environments are comma-separated lists of (variable,type)-pairs — in fact only the lists whose variables are mutually distinct get used)

The typing relation $\Gamma \vdash t : A$ is inductively defined by the following rules, which make use of the notation below Γ ok means: no variable occurs more than once in Γ dom Γ = finite set of variables occurring in Γ

Typing rules for variables

 $\frac{\Gamma \text{ ok } x \notin \text{dom } \Gamma}{\Gamma, x : A \vdash x : A} \text{ (VAR)}$ $\frac{\Gamma \vdash x : A \quad x' \notin \text{dom } \Gamma}{\Gamma, x' : A' \vdash x : A} \text{ (VAR')}$

Typing rules for constants and unit value

$$\frac{\Gamma \text{ ok}}{\Gamma \vdash c^A : A} \text{ (cons)}$$
$$\frac{\Gamma \text{ ok}}{\Gamma \vdash () : \text{ unit }} \text{ (unit)}$$

Typing rules for pairs and projections

 $\frac{\Gamma \vdash s : A \qquad \Gamma \vdash t : B}{\Gamma \vdash (s, t) : A \times B} (PAIR)$ $\frac{\Gamma \vdash t : A \times B}{\Gamma \vdash fst \ t : A} (FST)$ $\frac{\Gamma \vdash t : A \times B}{\Gamma \vdash snd \ t : B} (SND)$

Typing rules for function abstraction & application

$$\frac{\Gamma, x : A \vdash t : B}{\Gamma \vdash \lambda x : A. t : A \rightarrow B} (\text{fun})$$

$$\frac{\Gamma \vdash s : A \rightarrow B}{\Gamma \vdash s : t : B} (\text{fun}) (\text{app})$$

Example typing derivation:

NB: The STLC typing rules are "syntax-directed", by the structure of terms *t* and then in the case of variables *x*, by the structure of typing environments Γ .

Given a cartesian closed category **C**, any function *M* mapping ground types *G* to objects $M(G) \in \mathbf{C}$ extends to a function $A \mapsto M[\![A]\!] \in \mathbf{C}$ and $\Gamma \mapsto M[\![\Gamma]\!] \in \mathbf{C}$ from STLC types and typing environments to **C**-objects, by recursion on their structure:

$$\begin{split} M\llbracket G\rrbracket &= M(G) & \text{an object in } \mathbf{C} \\ M\llbracket \text{unit}\rrbracket &= 1 & \text{terminal object in } \mathbf{C} \\ M\llbracket A \times B\rrbracket &= M\llbracket A\rrbracket \times M\llbracket B\rrbracket & \text{product in } \mathbf{C} \\ M\llbracket A \to B\rrbracket &= M\llbracket A\rrbracket \Rightarrow M\llbracket B\rrbracket & \text{exponential in } \mathbf{C} \\ M\llbracket \diamond\rrbracket &= 1 & \text{terminal object in } \mathbf{C} \\ M\llbracket \Gamma, x : A\rrbracket &= M\llbracket \Gamma\rrbracket \times M\llbracket A\rrbracket & \text{product in } \mathbf{C} \end{split}$$

Given a cartesian closed category C, and

given any function M mapping

ground types G to C-objects M(G)
 (which extends to a function mapping all types to objects, A → M[A], as we have seen)

Given a cartesian closed category C, and given any function M mapping

- ► ground types *G* to C-objects *M*(*G*)
- constants c^A to C-morphisms $M(c^A) : 1 \to M[A]$ (In a category with a terminal object 1, given an object $X \in C$, morphisms $1 \to X$ are typically called global elements of X.)

Given a cartesian closed category C, and given any function M mapping

- ► ground types *G* to **C**-objects *M*(*G*)
- constants c^A to C-morphisms $M(c^A) : 1 \to M[A]$

we get a function mapping provable instances of the typing relation $\Gamma \vdash t : A$ to C-morphisms

$$M[\![\Gamma \vdash t : A]\!] : M[\![\Gamma]\!] \to M[\![A]\!]$$

defined by recursing over the proof of $\Gamma \vdash t : A$ from the typing rules (which follows the structure of *t*):

Semantics of STLC terms in a ccc Variables:

 $M\llbracket\Gamma, x : A \vdash x : A\rrbracket = M\llbracket\Gamma\rrbracket \times M\llbracketA\rrbracket \xrightarrow{\pi_2} M\llbracketA\rrbracket$ $M\llbracket\Gamma, x' : A' \vdash x : A\rrbracket$ $= M\llbracket\Gamma\rrbracket \times M\llbracketA'\rrbracket \xrightarrow{\pi_1} M\llbracket\Gamma\rrbracket \xrightarrow{M\llbracket\Gamma \vdash x : A\rrbracket} M\llbracketA\rrbracket$

Constants:

 $M\llbracket\Gamma \vdash c^{A} : A\rrbracket = M\llbracket\Gamma\rrbracket \xrightarrow{\langle\rangle} 1 \xrightarrow{M(c^{A})} M\llbracketA\rrbracket$ Unit value:

 $M[\![\Gamma \vdash (): \texttt{unit}]\!] = M[\![\Gamma]\!] \xrightarrow{()} 1$

Pairing:

$M\llbracket\Gamma \vdash (s, t) : A \times B\rrbracket$ $= M\llbracket\Gamma\rrbracket \xrightarrow{\langle M\llbracket\Gamma \vdash s:A\rrbracket, M\llbracket\Gamma \vdash t:B\rrbracket\rangle} M\llbracketA\rrbracket \times M\llbracketB\rrbracket$

Projections:

$$\begin{split} M[\![\Gamma \vdash \texttt{fst} t : A]\!] \\ &= M[\![\Gamma]\!] \xrightarrow{M[\![\Gamma \vdash t: A \times B]\!]} M[\![A]\!] \times M[\![B]\!] \xrightarrow{\pi_1} M[\![A]\!] \end{split}$$

Semantics of STLC terms in a ccc **Pairing**: $M \| \Gamma \vdash (s, t) : A \times B \|$ $= M[\Gamma] \xrightarrow{\langle M[\Gamma \vdash s:A], M[\Gamma \vdash t:B] \rangle} M[A] \times M[B]$ Given that $\Gamma \vdash fst t : A$ holds, there is a unique type B**Projections:** such that $\Gamma \vdash t : A \times B$ already $M[\Gamma \vdash \texttt{fst} t : A]$ holds. $= M[[\Gamma]] \xrightarrow{M[[\Gamma \vdash t:A \times B]]} M[[A]] \times M[[B]] \xrightarrow{\pi_1} M[[A]]$

Lemma. If $\Gamma \vdash t : A$ and $\Gamma \vdash t : B$ are provable, then A = B.

Pairing:

$M\llbracket\Gamma \vdash (s, t) : A \times B\rrbracket$ $= M\llbracket\Gamma\rrbracket \xrightarrow{\langle M\llbracket\Gamma \vdash s:A\rrbracket, M\llbracket\Gamma \vdash t:B\rrbracket\rangle} M\llbracketA\rrbracket \times M\llbracketB\rrbracket$

Projections:

$$\begin{split} M[\![\Gamma \vdash \operatorname{snd} t : B]\!] &= \\ M[\![\Gamma]\!] \xrightarrow{M[\![\Gamma \vdash t: A \times B]\!]} M[\![A]\!] \times M[\![B]\!] \xrightarrow{\pi_2} M[\![B]\!] \end{split}$$

(As for the case of fst, if $\Gamma \vdash \operatorname{snd} t : B$, then $\Gamma \vdash t : A \times B$ already holds for a unique type A.)

Function abstraction:

$$M\llbracket\Gamma \vdash \lambda x : A.t : A \to B\rrbracket$$

= cur f : M[[\Gamma]] $\to (M\llbracketA\rrbracket \Rightarrow M\llbracketB\rrbracket)$

where

 $f = M[\![\Gamma, x : A \vdash t : B]\!] : M[\![\Gamma]\!] \times M[\![A]\!] \to M[\![B]\!]$

Function application:

$$M\llbracket\Gamma \vdash s \ t : B\rrbracket$$
$$= M\llbracket\Gamma\rrbracket \xrightarrow{\langle f,g \rangle} (M\llbracketA\rrbracket \Longrightarrow M\llbracketB\rrbracket) \times M\llbracketA\rrbracket \xrightarrow{\text{app}} M\llbracketB\rrbracket$$

where

 $A = unique type such that \Gamma \vdash s : A \to B and \Gamma \vdash t : A$ already holds (exists because $\Gamma \vdash s t : B$ holds) $f = M[\Gamma \vdash s : A \to B] : M[\Gamma] \to (M[A]] \Rightarrow M[B])$ $g = M[\Gamma \vdash t : A] : M[\Gamma] \to M[A]$

Example

Consider $t \triangleq \lambda x : A. g(f x)$ so that $\Gamma \vdash t : A \to C$ for $\Gamma \triangleq \diamond, f : \overline{A \to B, q : B \to C}.$ Suppose M[A] = X, M[B] = Y and M[C] = Z in C. Then $M[[\Gamma]] = (1 \times Y^X) \times Z^Y$ $M[\Gamma, x : A] = ((1 \times Y^X) \times Z^Y) \times X$ $M[\Gamma, x : A \vdash x : A] = \pi_2$ $M\llbracket\Gamma, x : A \vdash q : B \to C\rrbracket = \pi_2 \circ \pi_1$ $M\llbracket\Gamma, x : A \vdash f : A \to B\rrbracket = \pi_2 \circ \pi_1 \circ \pi_1$ $M[\Gamma, x : A \vdash f x : B] = \operatorname{app} \circ \langle \pi_2 \circ \pi_1 \circ \pi_1, \pi_2 \rangle$ $M\llbracket\Gamma, x : A \vdash q(f x) : C\rrbracket = \operatorname{app} \circ \langle \pi_2 \circ \pi_1, \operatorname{app} \circ \langle \pi_2 \circ \pi_1 \circ \pi_1, \pi_2 \rangle \rangle$ $M\llbracket\Gamma \vdash t : A \to C\rrbracket = \operatorname{cur}(\operatorname{app} \circ \langle \pi_2 \circ \pi_1, \operatorname{app} \circ \langle \pi_2 \circ \pi_1 \circ \pi_1, \pi_2 \rangle \rangle)$