
Non-example of a ccc

The categoryMon of monoids has a terminal object and
binary products, but is not a ccc

because of the following bijections between sets, where 1 denotes a one-element

set and the corresponding one-element monoid:

�(-) � Set(-,Z2)

� Mon(List-,Z2)

� Mon(1 × List-,Z2)

by universal property of
the free monoid List-

on the set -

- � 1 × -

88

Non-example of a ccc

The categoryMon of monoids has a terminal object and
binary products, but is not a ccc

because of the following bijections between sets, where 1 denotes a one-element

set and the corresponding one-element monoid:

�(-) � Set(-,Z2)

� Mon(List-,Z2)

� Mon(1 × List-,Z2)

Since the one-element monoid is initial inMon, for any" ∈ Mon, we have
Mon(1, ") � 1 and hence

List- ⇒ Z2 exists inMon iff �(-) � 1 iff - = 0

Btw, a ccc has a zero object if, and only if, it is trivial (check).
88

Cartesian closed pre-order

Recall that each preorder % = (%,⊑) gives a category C% .
It is a biccc iff % has

◮ a greatest element ⊤: ∀? ∈ %, ? ⊑ ⊤

◮ a least element ⊥: ∀? ∈ %, ⊥ ⊑ ?

◮ binary meets ? ∧ @:
∀A ∈ %, A ⊑ ? ∧ @ ⇔ A ⊑ ? ∧ A ⊑ @

◮ binary joins ? ∨ @:
∀A ∈ %, ? ∨ @ ⊑ A ⇔ ? ⊑ A ∧ @ ⊑ A

◮ Heyting implications ? � @:
∀A ∈ %, A ⊑ ? � @ ⇔ A ∧ ? ⊑ @

89

Examples:

◮ Any Boolean algebra (with ? � @ = ¬? ∨ @).

◮ ([0, 1], ≤) with ⊤ = 1, ⊥ = 0, ? ∧ @ = min{?, @},

? ∨ @ = max{?, @}, and ? � @ =

{
1 if ? ≤ @

@ if @ < ?

90

Intuitionistic Propositional Logic (IPL)

We present it in “natural deduction” style and only consider the fragment with

conjunction and implication, with the following syntax:

Formulas of IPL: i,k, \, . . . ::=
?, @, A , . . . propositional identifiers
true truth
i &k conjunction
i =>k implication

Sequents of IPL: Φ ::= ⋄ empty
Φ, i non-empty

(so sequents are finite lists of formulas)

91

IPL entailment Φ ⊢ i

The intended meaning of Φ ⊢ i is “the conjunction of the formulas in Φ implies

the formula i”. The relation ⊢ is inductively generated by the following rules:

Φ, i ⊢ i
(ax)

Φ ⊢ i

Φ,k ⊢ i
(wk)

Φ ⊢ i Φ, i ⊢ k

Φ ⊢ k
(cut)

Φ ⊢ true
(true)

Φ ⊢ i Φ ⊢ k

Φ ⊢ i &k
(&i)

Φ, i ⊢ k

Φ ⊢ i =>k
(=>i)

Φ ⊢ i &k

Φ ⊢ i
(&e1)

Φ ⊢ i &k

Φ ⊢ k
(&e2)

Φ ⊢ i =>k Φ ⊢ i

Φ ⊢ k
(=>e)

92

For example, if Φ = ⋄, i =>k,k => \ , then Φ ⊢ i => \ is
provable in IPL, because:

(ax)
Φ ⊢ k => \

(wk)
Φ, i ⊢ k => \

(ax)
⋄, i =>k ⊢ i =>k

(wk)
Φ ⊢ i =>k

(wk)
Φ, i ⊢ i =>k

(ax)
Φ, i ⊢ i

(=>e)
Φ, i ⊢ k

(=>e)
Φ, i ⊢ \

(=>i)
Φ ⊢ i => \

93

Semantics of IPL
in a cartesian closed pre-order (%,⊑)

Given a function " assigning a meaning to each propositional

identifier ? as an element " (?) ∈ % , we can assign meanings to IPL

formula i and sequents Φ as elements "JiK, "JΦK ∈ % by recursion

on their structure:

"J?K = " (?)

"JtrueK = ⊤ greatest element

"Ji &kK = "JiK ∧"JkK binary meet

"Ji =>kK = "JiK � "JkK Heyting implication

"J⋄K = ⊤ greatest element

"JΦ, iK = "JΦK ∧"JiK binary meet

94

Semantics of IPL
in a cartesian closed pre-order (%,⊑)

Soundness Theorem. If Φ ⊢ i is provable from the
rules of IPL, then"JΦK ⊑ "JiK holds in any cartesian
closed pre-order.

Proof. exercise (show that {(Φ, i) | "JΦK ⊑ "JiK} is closed under the rules
defining IPL entailment and hence contains {(Φ, i) | Φ ⊢ i})

94

Example
Peirce’s Law ⋄ ⊢ ((i =>k) => i) => i

is not provable in IPL.
(whereas the formula ((i =>k) => i) => i is a classical tautology)

95

Example
Peirce’s Law ⋄ ⊢ ((i =>k) => i) => i

is not provable in IPL.
(whereas the formula ((i =>k) => i) => i is a classical tautology)

For if ⋄ ⊢ ((i =>k) => i) => i were provable in IPL, then by the
Soundness Theorem we would have
⊤ = "J⋄K ⊑ "J((i =>k) => i) => iK.

But in the cartesian closed poset ([0, 1], ≤), taking" (?) = 1/2 and
" (@) = 0, we get

"J((? => @) => ?) => ?K = ((1/2 � 0) � 1/2) � 1/2

= (0 � 1/2) � 1/2

= 1 � 1/2

= 1/2

� 1
95

Semantics of IPL
in a cartesian closed preorder (%,⊑)

Completeness Theorem. Given Φ, i , if for all cartesian
closed preorders (%,⊑) and all interpretations" of the
propositional identifiers as elements of % , it is the case
that"JΦK ⊑ "JiK holds in % , then Φ ⊢ i is provable in
IPL.

96

Semantics of IPL
in a cartesian closed preorder (%,⊑)

Completeness Theorem. Given Φ, i , if for all cartesian
closed preorders (%,⊑) and all interpretations" of the
propositional identifiers as elements of % , it is the case
that"JΦK ⊑ "JiK holds in % , then Φ ⊢ i is provable in
IPL.
Proof. Define

% , {formulas of IPL}

i ⊑ k , ⋄, i ⊢ k is provable in IPL

Then one can show that (%, ⊑) is a cartesian closed preorder.
For this preorder, taking" to be" (?) = ? , one can show that"JΦK ⊑ "JiK
holds in % iff Φ ⊢ i is provable in IPL. �

96

Proof theory

Two IPL proofs of ⋄, i =>k,k => \ ⊢ i => \

(ax)· · · (wk)
Φ, i ⊢ k => \

(ax)· · · (wk)· · · (wk)
Φ, i ⊢ i =>k

(ax)
Φ, i ⊢ i

(=>e)
Φ, i ⊢ k

(=>e)
Φ, i ⊢ \

(=>i)
Φ ⊢ i => \ where Φ , ⋄, i =>k,k => \

(ax)· · · (wk)· · · (wk)
Ψ ⊢ i =>k

(ax)
Ψ ⊢ i

(=>e)
Ψ ⊢ k

(ax)· · · (wk)· · · (wk)
Ψ,k ⊢ k => \

(ax)
Ψ,k ⊢ k

(=>e)
Ψ,k ⊢ \

(cut)
Ψ ⊢ \ (=>i)

⋄, i =>k,k => \ ⊢ i => \
where Ψ , ⋄, i =>k,k => \, i

97

Proof theory

Two IPL proofs of ⋄, i =>k,k => \ ⊢ i => \

(ax)· · · (wk)
Φ, i ⊢ k => \

(ax)· · · (wk)· · · (wk)
Φ, i ⊢ i =>k

(ax)
Φ, i ⊢ i

(=>e)
Φ, i ⊢ k

(=>e)
Φ, i ⊢ \

(=>i)
Φ ⊢ i => \ where Φ , ⋄, i =>k,k => \

(ax)· · · (wk)· · · (wk)
Ψ ⊢ i =>k

(ax)
Ψ ⊢ i

(=>e)
Ψ ⊢ k

(ax)· · · (wk)· · · (wk)
Ψ,k ⊢ k => \

(ax)
Ψ,k ⊢ k

(=>e)
Ψ,k ⊢ \

(cut)
Ψ ⊢ \ (=>i)

⋄, i =>k,k => \ ⊢ i => \
where Ψ , ⋄, i =>k,k => \, i

Why is the first proof simpler than the second one?

97

Proof theory

Φ, i ⊢ i
(ax)

Φ ⊢ i

Φ,k ⊢ i
(wk)

Φ ⊢ i Φ, i ⊢ k

Φ ⊢ k
(cut)

Φ ⊢ true
(true)

Φ ⊢ i Φ ⊢ k

Φ ⊢ i &k
(&i)

Φ, i ⊢ k

Φ ⊢ i =>k
(=>i)

Φ ⊢ i &k

Φ ⊢ i
(&e1)

Φ ⊢ i &k

Φ ⊢ k
(&e2)

Φ ⊢ i =>k Φ ⊢ i

Φ ⊢ k
(=>e)

FACT: if an IPL sequent Φ ⊢ q is provable from the rules, it is
provable without using the (cut) rule.

98

Proof theory

Φ, i ⊢ i
(ax)

Φ ⊢ i

Φ,k ⊢ i
(wk)

Φ ⊢ i Φ, i ⊢ k

Φ ⊢ k
(cut)

Φ ⊢ true
(true)

Φ ⊢ i Φ ⊢ k

Φ ⊢ i &k
(&i)

Φ, i ⊢ k

Φ ⊢ i =>k
(=>i)

Φ ⊢ i &k

Φ ⊢ i
(&e1)

Φ ⊢ i &k

Φ ⊢ k
(&e2)

Φ ⊢ i =>k Φ ⊢ i

Φ ⊢ k
(=>e)

FACT: if an IPL sequent Φ ⊢ q is provable from the rules, it is
provable without using the (cut) rule.

Simply-Typed Lambda Calculus provides a language for describing
proofs in IPL and their properties.

98

Simply-Typed Lambda Calculus (STLC)

Types: �, �,�, . . . ::=

�,�′,�′′ . . . “ground” types
unit unit type
� × � product type
� � � function type

99

Simply-Typed Lambda Calculus (STLC)

Types: �, �,�, . . . ::=

�,�′,�′′ . . . “ground” types
unit unit type
� × � product type
� � � function type

Terms: B, C, A, . . . ::=

2� constants (of given type �)
G variable (countably many)
() unit value
(B , C) pair
fst C snd C projections
_G : �. C function abstraction
B C function application

99

STLC
Some examples of terms:

◮ _I : (� � �) × (� � �) . _G : �. ((fst I) G , (snd I) G))

(has type ((� � �) × (� � �)) � (� � (� ×�)))

◮ _I : � � (� ×�) . (_G : �. fst(I G) , _~ : �. snd(I ~))

(has type (� � (� ×�)) � ((� � �) × (� � �)))

◮ _I : � � (� ×�) . _G : �. ((fst I) G , (snd I) G)

(has no type)

100

STLC typing relation, Γ ⊢ C : �

Γ ranges over typing environments

Γ ::= ⋄ | Γ, G : �

(so typing environments are comma-separated lists of (variable,type)-pairs — in

fact only the lists whose variables are mutually distinct get used)

The typing relation Γ ⊢ C : � is inductively defined by the
following rules, which make use of the notation below

Γ ok means: no variable occurs more than once in Γ

dom Γ = finite set of variables occurring in Γ

101

STLC typing relation, Γ ⊢ C : �

Typing rules for variables

Γ ok G ∉ dom Γ

Γ, G : � ⊢ G : �
(var)

Γ ⊢ G : � G′ ∉ dom Γ

Γ, G′ : �′ ⊢ G : �
(var’)

Typing rules for constants and unit value

Γ ok

Γ ⊢ 2� : �
(cons)

Γ ok

Γ ⊢ () : unit
(unit)

102

STLC typing relation, Γ ⊢ C : �

Typing rules for pairs and projections

Γ ⊢ B : � Γ ⊢ C : �

Γ ⊢ (B , C) : � × �
(pair)

Γ ⊢ C : � × �

Γ ⊢ fst C : �
(fst)

Γ ⊢ C : � × �

Γ ⊢ snd C : �
(snd)

103

STLC typing relation, Γ ⊢ C : �

Typing rules for function abstraction & application

Γ, G : � ⊢ C : �

Γ ⊢ _G : �. C : � � �
(fun)

Γ ⊢ B : � � � Γ ⊢ C : �

Γ ⊢ B C : �
(app)

104

STLC typing relation, Γ ⊢ C : �

Example typing derivation:

(var)
Γ ⊢ 6 : � � �

(var’)
Γ, G : � ⊢ 6 : � � �

(var)
⋄, 5 : � � � ⊢ 5 : � � �

(var’)
Γ ⊢ 5 : � � �

(var’)
Γ, G : � ⊢ 5 : � � �

(var)
Γ, G : � ⊢ G : �

(app)
Γ, G : � ⊢ 5 G : �

(app)
Γ, G : � ⊢ 6(5 G) : �

(fun)
Γ ⊢ _G : �.6(5 G) : � � �

(fun)
⋄, 5 : � � � ⊢ _6 : � � �. _G : �.6(5 G) : (� � �) � (� � �)

(fun)
⋄ ⊢ _5 : � � �. _6 : � � �. _G : �.6(5 G) : (� � �) � (� � �) � (� � �)

where Γ , ⋄, 5 : � � �,6 : � � �

NB: The STLC typing rules are “syntax-directed”, by the structure of terms C and
then in the case of variables G , by the structure of typing environments Γ.

105

Semantics of STLC types in a ccc

Given a cartesian closed category C, any function " mapping

ground types � to objects" (�) ∈ C extends to a function

� ↦→ "J�K ∈ C and Γ ↦→ "JΓK ∈ C from STLC types and typing

environments to C-objects, by recursion on their structure:

"J�K = " (�) an object in C

"JunitK = 1 terminal object in C

"J� × �K = "J�K ×"J�K product in C

"J� � �K = "J�K⇒ "J�K exponential in C

"J⋄K = 1 terminal object in C

"JΓ, G : �K = "JΓK ×"J�K product in C

106

Semantics of STLC terms in a ccc

Given a cartesian closed category C, and

given any function" mapping

◮ ground types� to C-objects" (�)
(which extends to a function mapping all types to objects,� ↦→ "J�K, as
we have seen)

107

Semantics of STLC terms in a ccc

Given a cartesian closed category C, and

given any function" mapping

◮ ground types� to C-objects" (�)
◮ constants 2� to C-morphisms " (2�) : 1→ "J�K

(In a category with a terminal object 1, given an object - ∈ C, morphisms
1→ - are typically called global elements of - .)

107

Semantics of STLC terms in a ccc

Given a cartesian closed category C, and

given any function" mapping

◮ ground types� to C-objects" (�)

◮ constants 2� to C-morphisms " (2�) : 1→ "J�K

we get a function mapping provable instances of the
typing relation Γ ⊢ C : � to C-morphisms

"JΓ ⊢ C : �K : "JΓK→ "J�K

defined by recursing over the proof of Γ ⊢ C : � from the
typing rules (which follows the structure of C):

107

Semantics of STLC terms in a ccc

Variables:

"JΓ, G : � ⊢ G : �K = "JΓK ×"J�K
c2
−→ "J�K

"JΓ, G′ : �′ ⊢ G : �K

= "JΓK ×"J�′K
c1
−→ "JΓK

"JΓ⊢G :�K
−−−−−−−→ "J�K

Constants:

"JΓ ⊢ 2� : �K = "JΓK
〈〉
−→ 1

" (2�)
−−−−→ "J�K

Unit value:

"JΓ ⊢ () : unitK = "JΓK
〈〉
−→ 1

108

Semantics of STLC terms in a ccc

Pairing:

"JΓ ⊢ (B , C) : � × �K

= "JΓK
〈"JΓ⊢B :�K,"JΓ⊢C :�K〉
−−−−−−−−−−−−−−−−→ "J�K ×"J�K

Projections:

"JΓ ⊢ fst C : �K

= "JΓK
"JΓ⊢C :�×�K
−−−−−−−−−→ "J�K ×"J�K

c1
−→ "J�K

109

Semantics of STLC terms in a ccc

Pairing:

"JΓ ⊢ (B , C) : � × �K

= "JΓK
〈"JΓ⊢B :�K,"JΓ⊢C :�K〉
−−−−−−−−−−−−−−−−→ "J�K ×"J�K

Projections:

"JΓ ⊢ fst C : �K

= "JΓK
"JΓ⊢C :�×�K
−−−−−−−−−→ "J�K ×"J�K

c1
−→ "J�K

Given that Γ ⊢ fst C : � holds,
there is a unique type �

such that Γ ⊢ C : � × � already
holds.

Lemma. If Γ ⊢ C : � and Γ ⊢ C : � are provable, then � = �.
109

Semantics of STLC terms in a ccc

Pairing:

"JΓ ⊢ (B , C) : � × �K

= "JΓK
〈"JΓ⊢B :�K,"JΓ⊢C :�K〉
−−−−−−−−−−−−−−−−→ "J�K ×"J�K

Projections:

"JΓ ⊢ snd C : �K =

"JΓK
"JΓ⊢C :�×�K
−−−−−−−−−→ "J�K ×"J�K

c2
−→ "J�K

(As for the case of fst, if Γ ⊢ snd C : �, then Γ ⊢ C : � × � already holds for a

unique type �.)
109

Semantics of STLC terms in a ccc

Function abstraction:

"JΓ ⊢ _G : �.C : � � �K

= cur 5 : "JΓK→ ("J�K⇒ "J�K)

where

5 = "JΓ, G : � ⊢ C : �K : "JΓK ×"J�K→ "J�K

110

Semantics of STLC terms in a ccc

Function application:

"JΓ ⊢ B C : �K

= "JΓK
〈5 ,6〉
−−−→ ("J�K⇒ "J�K) ×"J�K

app
−−−→ "J�K

where

� = unique type such that Γ ⊢ B : � � � and Γ ⊢ C : �
already holds (exists because Γ ⊢ B C : � holds)

5 = "JΓ ⊢ B : � � �K : "JΓK→ ("J�K⇒ "J�K)

6 = "JΓ ⊢ C : �K : "JΓK→ "J�K

111

Example

Consider C , _G : �.6(5 G) so that Γ ⊢ C : � � � for

Γ , ⋄, 5 : � � �,6 : � � � .

Suppose "J�K = - , "J�K = . and"J�K = / in C. Then

"JΓK = (1 × .-) × /.

"JΓ, G : �K = ((1 × .-) × /.) × -

"JΓ, G : � ⊢ G : �K = c2

"JΓ, G : � ⊢ 6 : � � �K = c2 ◦ c1

"JΓ, G : � ⊢ 5 : � � �K = c2 ◦ c1 ◦ c1

"JΓ, G : � ⊢ 5 G : �K = app ◦〈c2 ◦ c1 ◦ c1 , c2〉

"JΓ, G : � ⊢ 6 (5 G) : �K = app ◦〈c2 ◦ c1 , app ◦〈c2 ◦ c1 ◦ c1 , c2〉〉

"JΓ ⊢ C : � � �K = cur(app ◦〈c2 ◦ c1 , app ◦〈c2 ◦ c1 ◦ c1 , c2〉〉)

112

