Commutative diagrams

In a category C:

a diagram is
a directed graph whose vertices are C-objects
and whose edges are C-morphisms

and the diagram is commutative (or commutes) if
any two finite paths in the graph between any
two vertices determine equal morphisms in the
category under composition
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Examples:

» The diagram
x 1oy

AN

Y—+2

commutes by the unity laws.

> The diagram

ng

/Y
f/g ih
Y—Z7
hg

commutes by the associativity law.
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One-object categories

Problem: Give an equivalent elementary description of
categories with a singleton set of objects.
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Each monoid determines a category

Given a monoid M = (M, e, 1), we get a category
Cum

by taking

objects: obj Cy = {*} (a singleton set)

morphisms: Cy(*, *) = M

identity morphism: id, =1 € M = Cp(*, *)

composition go f € Cy of f € Cp(%, %) and

g € Cpl*,%)isge f e M=Cpylx*)

vV vyYyy
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Isomorphism

Let C be a category. A C-morphism f : X — Y is an
isomorphism if there is some g : Y — X for which

x- oy

g\

X—Y
f

is a commutative diagram.
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Isomorphism

Let C be a category. A C-morphism f : X — Y is an
isomorphism if there is some g : Y — X with

gof =1idx and f o g =idy.

» Such a g is uniquely determined by f (why?) and

we write | f 1| for it.

> Given X, Y € C, if such an f exists, we say the
objects X and Y are isomorphic in C and write

NB: There may be many different morphisms witnessing
the fact that two objects are isomorphic.

39



Proposition. A function f € Set(X,Y) is an
isomorphism in the category Set iff f is a bijection,
equivalently:

> injective: Vx,x" € X, fx=fx' =>x=x
and

> surjective: Vy € Y,Ix € X, fx=y
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Proposition. A function f € Set(X,Y) is an
isomorphism in the category Set iff f is a bijection,
equivalently:

> injective: Vx,x" € X, fx=fx' =>x=x
and
> surjective: Vy € Y,Ix € X, fx=y

Proposition. A monoid morphism
f € Mon((My, ®1,11), (My, ®5,15)) is an isomorphism in
the category Mon iff f € Set(My, M,) is a bijection.
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Categories with trivial hom-sets

Problem: Give an equivalent elementary description of
categories with trivial hom-sets in the sense of being
either empty or a singleton set.
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Preorders and posets
A preorder P = (P,C) consists of a set P to equipped
with a binary relationonit _.C _ C P X P that is
reflexive: Vx € P, x C x
transitive: Vx,y,z € P, xEyAyCz=>xCz
A poset or (partial order) is a preorder that is also

anti-symmetric: Vx,y € P, x EyAyCx = x =y
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Examples:
> (N, <), (N, >)
> (P(X),9), ((X),2)

> (Z,|) where n|m & n divides m

Proposition.

1. If P = (P,C) is a preorder, then so is P°P

wherexgyé}ygx.
2. (PP)°P = P

(P.3)
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Each preorder determines a category

Given a preorder P = (P,C), we get a category
Ce
by taking
> objects: objCp =P
{(xy} ,ifxCy
0 Jifx Zy

> identity morphisms and composition are uniquely
determined (why?)

> morphisms: Cp(x,y) = {
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Each preorder determines a category

Given a preorder P = (P,C), we get a category
Ce
by taking
> objects: objCp =P
{(xy} ,ifxCy
0 Jifx Zy

> identity morphisms and composition are uniquely
determined (why?)

> morphisms: Cp(x,y) =

E.g. when P has just one element 0

Co- (0,0)=ido C 0

one object, one morphism
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Each preorder determines a category

Given a preorder P = (P,C), we get a category
Ce
by taking
> objects: objCp =P
{(xy} ,ifxCy
0 Jifx Zy

> identity morphisms and composition are uniquely
determined (why?)

> morphisms: Cp(x,y) =

E.g. when P has just two elements 0 C 1

CB _ (0,0)=id, C 0 ﬂ 1 Q id;=(1,1)

two objects, one non-identity morphism
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Category of preorders: Preord

> objects: preorders
> morphisms:

Preord((P;,Cq), (P2, C»))
= {f € Set(Py, P;) | f is monotone}

monotonicity: Vx,x’ € P;, x 5 x' = fx T, fx’
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Category of preorders: Preord

> objects: preorders
> morphisms:
Preord((Py, E1), (P2, C2))
= {f € Set(Py, P;) | f is monotone}
monotonicity: Vx,x" € P;, x T X' = fx T, fx’
> identities and composition: as for Set
Q: why is this well-defined?

A: because the set of monotone functions contains identity functions
and is closed under composition.
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Subcategory of posets: Poset

Define Poset to be the category whose objects are
posets, and is otherwise defined like the category
Preord of preorders.

NB: Pre and partial orders are relevant to the
denotational semantics of programming languages
(among other things).
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Proposition. A morphism f € Poset((P;,C1), (P2, E2))
is an isomorphism in the category Poset iff the function
f € Set(Py, P,) is

surjective: Vy € Py, Ix € Py, f(x) =y

and

reflective: Vx,x" € Py, fxCy fx' > x Ty x’

(Why does this characterisation not work for Preord?)
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Problem: Recalling that categories generalise both
monoids and preorders, find a notion of morphism
between categories that generalises both monoid
homomorphisms and monotone functions.
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Category-theoretic properties

Any two isomorphic objects in a category should have
the same category-theoretic properties — statements
that are provable in a formal logic for category theory,
whatever that is.

Instead of trying to formalize such a logic, we will just
look at examples of category-theoretic properties.

Here is our first one...
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Terminal object

An object T of a category C is terminal if for all X € C,
there is a unique C-morphism from X to T, which we
write as| ()x : X — T|.

VX eC, (x € C(X,T)

So we have { VX € C,Vf e C(X,T), f=0x

(In particular, idr = ()r.)

Convention: Sometimes we write !y or X for ()x —there
is no commonly accepted notation— and also just write

() or!.
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Examples of terminal objects

> In Set a set is terminal iff it is a singleton.

> Any one-element set has a unique preorder and this
makes it terminal in Preord and Poset.

> Any one-element set has a unique monoid (group)
structure and this makes it terminal in Mon (Grp).

51



Examples of terminal objects

In Set a set is terminal iff it is a singleton.

Any one-element set has a unique preorder and this
makes it terminal in Preord and Poset.

Any one-element set has a unique monoid (group)
structure and this makes it terminal in Mon (Grp).

A preorder P = (P,C), regarded as a category Cp,

has a terminal object iff it has a greatest element T,
thatis:Vx e P, x C T.
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Terminal object

terminal objects are unique up to unique isomorphism
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Terminal object

terminal objects are unique up to unique isomorphism

Proposition. In a category,

(a) If T and T’ are both terminal, then T = T’ (and
there is only one isomorphism between T and T’).

(b) If T is terminal and T = T’, then T’ is terminal.

Notation: If a category C has a terminal object we will

write that object as

lc

or[1]
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Global elements
Given a category C with a terminal object 1.

A global element of an object X € obj C is by definition
a morphism 1 — X in C.

E.g. Set(1set, X) = X; in Mon(1pon, M) = Tget.
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Global elements
Given a category C with a terminal object 1.

A global element of an object X € obj C is by definition
a morphism 1 — X in C.

E.g. Set(1set, X) = X; in Mon(1pon, M) = 1get.

Say that C is well-pointed if for all f,g: X — Y in C we
have:

(VlLXinC,fox:gox) = f=g

E.g. Set is well-pointed (by function extensionality); Mon
is not.
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Generalising elements

» Proposition. Forall f,g: M — M’ in Mon,
if
Ve:N— MinMon, foe=goe: N — M
then

f=9g
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Directed graphs
Let DiGph be the category with

> objects: (E,N € objSet, s,t:E— NinSet);
> morphisms:

h=(hehs): (E_N)— (E_"N')
t t’

given by functions he : E — E and hy : N — N’
such that

VYae€kE. s'(hea) = hy(sa)
and

VaeE.t'(hea) = hy(ta)

> identities and composition: given pointwise as in

Set.
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Directed graphs in a category

> For a category C, let DiGph(C) be the category

with

>

>

S
objects: diagrams E N inGC;
t
morphisms:

h=(hehn):(E__N)— (E__N')
t t’
given by he : E — E" and h, : N — N’ in C such that

E—=N E—t+~N
hel lhn and hel J/hn
E——=N’ E——=N’
s’ t
commute;

identities and composition: given pointwise as in C.
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NB. DiGph(Set) = DiGph.
Proposition. DiGph(Set) is not well-pointed. (Why?)

Is there a single C € DiGph(Set) such that, for all
f.g9: G — G’ in DiGph(Set),

Vc:C — GinDiGph(Set), foc=goc:C—> G
implies

f=9 ?
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Proposition. There exist A, B € DiGph(Set) such that
forall f,g: G — G’ in DiGph(Set),
if
Va:A — GinDiGph(Set), foa=gca:A— G
and
Vb:B — G in DiGph(Set), foeb=gob:B— G
then

f=9g
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Generalised elements

Idea:

Replace global elements 1 5 Xof X
by morphisms C 5 XforCe obj C
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Generalised elements

Idea:

Replace global elements 1 5 Xof X
by morphisms C 5 XforCe objC

Some people say that x is a generalised element of X
at stage C and use the notation x € X. For instance,
()c €c 1 is the unique generalised element of 1 at
stage C.

One may also think that x inhabits X in context C and
use the notation C + x : X; for instance, C + ()¢ : 1.
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NB: One has to take into account “change of stage or
context”™: foro : D — C,

x€cX = xo€p X
Ctrx:X = Drxo: X

(cf. Kripke’s “possible world” semantics of intuitionistic and modal logics)
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Opposite of a category

Given a category C, its opposite category is defined
by interchanging the operations of dom and cod in C:

> objC° = objC

> C°P(X,Y) = C(Y,X), for all objects X and Y

> identity morphism on X € obj C°P is
idy € C(X,X) = C°P(X, X)

> composition in C°P of f € C°P(X,Y) and
g € C°P(Y,Z) is given by the composition
fogeC(Z,X)=CP(X,Z)inC
(associativity and unity properties hold for this
operation because they do in C)
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