
Commutative diagrams

In a category C:

a diagram is
a directed graph whose vertices are C-objects
and whose edges are C-morphisms

and the diagram is commutative (or commutes) if
any two finite paths in the graph between any
two vertices determine equal morphisms in the
category under composition

35

Examples:

◮ The diagram

-
5

5

.

id.
6

. 6 /

commutes by the unity laws.

◮ The diagram

-
6 5

5

.

ℎ

.
ℎ 6

6

/

commutes by the associativity law.
36

One-object categories

Problem: Give an equivalent elementary description of
categories with a singleton set of objects.

37

Each monoid determines a category

Given a monoid " = (", •, y), we get a category

C"

by taking

◮ objects: objC" = {∗} (a singleton set)

◮ morphisms: C" (∗, ∗) = "

◮ identity morphism: id∗ = y ∈ " = C" (∗, ∗)

◮ composition 6 ◦ 5 ∈ C" of 5 ∈ C" (∗, ∗) and
6 ∈ C" (∗, ∗) is 6 • 5 ∈ " = C" (∗, ∗)

38

Isomorphism
Let C be a category. A C-morphism 5 : - → . is an
isomorphism if there is some 6 : . → - for which

-
5

id-

.

6
id.

-
5
.

is a commutative diagram.

39

Isomorphism
Let C be a category. A C-morphism 5 : - → . is an
isomorphism if there is some 6 : . → - with
6 ◦ 5 = id- and 5 ◦ 6 = id. .

◮ Such a 6 is uniquely determined by 5 (why?) and

we write 5 −1 for it.

◮ Given -,. ∈ C, if such an 5 exists, we say the
objects - and . are isomorphic in C and write
- � .

NB: There may be many different morphisms witnessing
the fact that two objects are isomorphic.

39

Proposition. A function 5 ∈ Set(-,.) is an
isomorphism in the category Set iff 5 is a bijection,
equivalently:

◮ injective: ∀G, G′ ∈ -, 5 G = 5 G′⇒ G = G′

and

◮ surjective: ∀~ ∈ .,∃G ∈ -, 5 G = ~

40

Proposition. A function 5 ∈ Set(-,.) is an
isomorphism in the category Set iff 5 is a bijection,
equivalently:

◮ injective: ∀G, G′ ∈ -, 5 G = 5 G′⇒ G = G′

and

◮ surjective: ∀~ ∈ .,∃G ∈ -, 5 G = ~

Proposition. A monoid morphism
5 ∈ Mon(("1, •1, y1), ("2, •2, y2)) is an isomorphism in
the categoryMon iff 5 ∈ Set("1, "2) is a bijection.

40

Categories with trivial hom-sets

Problem: Give an equivalent elementary description of
categories with trivial hom-sets in the sense of being
either empty or a singleton set.

41

Preorders and posets

A preorder % = (%,⊑) consists of a set % to equipped
with a binary relation on it ⊑ ⊆ % × % that is

reflexive: ∀G ∈ %, G ⊑ G

transitive: ∀G,~, I ∈ %, G ⊑ ~ ∧ ~ ⊑ I ⇒ G ⊑ I

A poset or (partial order) is a preorder that is also

anti-symmetric: ∀G,~ ∈ %, G ⊑ ~ ∧ ~ ⊑ G ⇒ G = ~

42

Examples:

◮ (N, ≤) , (N, ≥)

◮ (�(-), ⊆), (�(-), ⊇)

◮ (Z, |) where = |<
△

⇔ = divides<

Proposition.

1. If % = (%,⊑) is a preorder, then so is %op , (%,⊒)

where G ⊒ ~
△

⇔ ~ ⊑ G .

2. (%op)op = %

43

Each preorder determines a category

Given a preorder % = (%,⊑), we get a category

C%

by taking

◮ objects: objC% = %

◮ morphisms: C% (G,~) ,

{
{ (G,~) } , if G ⊑ ~

∅ , if G 6⊑ ~

◮ identity morphisms and composition are uniquely
determined (why?)

44

Each preorder determines a category

Given a preorder % = (%,⊑), we get a category

C%

by taking

◮ objects: objC% = %

◮ morphisms: C% (G,~) ,

{
{ (G,~) } , if G ⊑ ~

∅ , if G 6⊑ ~
◮ identity morphisms and composition are uniquely

determined (why?)

E.g. when % has just one element 0

C% =
0(0,0)=id0

one object, one morphism

44

Each preorder determines a category

Given a preorder % = (%,⊑), we get a category

C%

by taking

◮ objects: objC% = %

◮ morphisms: C% (G,~) ,

{
{ (G,~) } , if G ⊑ ~

∅ , if G 6⊑ ~
◮ identity morphisms and composition are uniquely

determined (why?)

E.g. when % has just two elements 0 ⊑ 1

C% = 0(0,0)=id0
(0,1)

1 id1=(1,1)

two objects, one non-identity morphism
44

Category of preorders: Preord

◮ objects: preorders

◮ morphisms:

Preord((%1, ⊑1), (%2, ⊑2))

, {5 ∈ Set(%1, %2) | 5 is monotone}

monotonicity: ∀G, G′ ∈ %1, G ⊑1 G
′⇒ 5 G ⊑2 5 G

′

45

Category of preorders: Preord

◮ objects: preorders

◮ morphisms:

Preord((%1, ⊑1), (%2, ⊑2))

, {5 ∈ Set(%1, %2) | 5 is monotone}

monotonicity: ∀G, G′ ∈ %1, G ⊑1 G
′⇒ 5 G ⊑2 5 G

′

◮ identities and composition: as for Set

Q: why is this well-defined?
A: because the set of monotone functions contains identity functions
and is closed under composition.

45

Subcategory of posets: Poset

Define Poset to be the category whose objects are
posets, and is otherwise defined like the category
Preord of preorders.

NB: Pre and partial orders are relevant to the
denotational semantics of programming languages
(among other things).

46

Proposition. A morphism 5 ∈ Poset((%1, ⊑1), (%2, ⊑2))

is an isomorphism in the category Poset iff the function
5 ∈ Set(%1, %2) is

surjective: ∀~ ∈ %2, ∃G ∈ %1, 5 (G) = ~

and

reflective: ∀G, G′ ∈ %1, 5 G ⊑2 5 G
′⇒ G ⊑1 G

′

(Why does this characterisation not work for Preord?)

47

Problem: Recalling that categories generalise both
monoids and preorders, find a notion of morphism
between categories that generalises both monoid
homomorphisms and monotone functions.

48

Category-theoretic properties

Any two isomorphic objects in a category should have
the same category-theoretic properties – statements
that are provable in a formal logic for category theory,
whatever that is.

Instead of trying to formalize such a logic, we will just
look at examples of category-theoretic properties.

Here is our first one. . .

49

Terminal object
An object) of a category C is terminal if for all - ∈ C,
there is a unique C-morphism from - to) , which we
write as 〈〉- : - →) .

So we have

{
∀- ∈ C, 〈〉- ∈ C(-,))

∀- ∈ C,∀5 ∈ C(-,)), 5 = 〈〉-

(In particular, id) = 〈〉) .)

Convention: Sometimes we write !- or - for 〈〉- —there
is no commonly accepted notation— and also just write
〈〉 or !.

50

Examples of terminal objects

◮ In Set a set is terminal iff it is a singleton.

◮ Any one-element set has a unique preorder and this
makes it terminal in Preord and Poset.

◮ Any one-element set has a unique monoid (group)
structure and this makes it terminal in Mon (Grp).

51

Examples of terminal objects

◮ In Set a set is terminal iff it is a singleton.

◮ Any one-element set has a unique preorder and this
makes it terminal in Preord and Poset.

◮ Any one-element set has a unique monoid (group)
structure and this makes it terminal in Mon (Grp).

◮ A preorder % = (%,⊑), regarded as a category C% ,

has a terminal object iff it has a greatest element ⊤,
that is: ∀G ∈ %, G ⊑ ⊤.

51

Terminal object

terminal objects are unique up to unique isomorphism

52

Terminal object

terminal objects are unique up to unique isomorphism

Proposition. In a category,

(a) If) and) ′ are both terminal, then) �) ′ (and
there is only one isomorphism between) and) ′).

(b) If) is terminal and) �) ′, then) ′ is terminal.

Notation: If a category C has a terminal object we will
write that object as 1C or 1 .

52

Global elements

Given a category C with a terminal object 1.

A global element of an object - ∈ objC is by definition
a morphism 1→ - in C.

E.g. Set(1Set, -) � - ; in Mon(1Mon, ") � 1Set.

53

Global elements

Given a category C with a terminal object 1.

A global element of an object - ∈ objC is by definition
a morphism 1→ - in C.

E.g. Set(1Set, -) � - ; in Mon(1Mon, ") � 1Set.

Say that C is well-pointed if for all 5 , 6 : - → . in C we
have: (

∀1
G
−→ - in C, 5 ◦ G = 6 ◦ G

)
⇒ 5 = 6

E.g. Set is well-pointed (by function extensionality); Mon

is not.
53

Generalising elements

◮ Proposition. For all 5 , 6 : " → "′ inMon,
if

∀4 : N→ " in Mon, 5 ◦ 4 = 6 ◦ 4 : N→ "′

then

5 = 6

54

Directed graphs
Let DiGph be the category with

◮ objects: (�, # ∈ obj Set , B, C : � → # in Set);

◮ morphisms:

ℎ = (ℎe, ℎn) : (�
B

C
) −→ (�′

B′

C ′
′)

given by functions ℎe : � → �′ and ℎn : # → # ′

such that

∀0 ∈ �. B′(ℎe 0) = ℎn(B 0)

and

∀0 ∈ �. C ′(ℎe 0) = ℎn(C 0)

◮ identities and composition: given pointwise as in
Set.

55

Directed graphs in a category

◮ For a category C, let DiGph(C) be the category
with

◮ objects: diagrams �
B

C
in C;

◮ morphisms:

ℎ = (ℎe, ℎn) : (�
B

C
) −→ (�′

B ′

C ′
′)

given by ℎe : � → �′ and ℎn : # → # ′ in C such that

�

ℎe

B
#

ℎn

�′
B ′

′

and

�

ℎe

C
#

ℎn

�′
C ′

′

commute;
◮ identities and composition: given pointwise as in C.

56

NB. DiGph((4C) = DiGph.

Proposition. DiGph(Set) is not well-pointed. (Why?)

? Is there a single � ∈ DiGph(Set) such that, for all
5 , 6 : � → �′ in DiGph(Set),

∀2 : � → � in DiGph(Set), 5 ◦ 2 = 6 ◦ 2 : � → �′

implies

5 = 6 ?

57

Proposition. There exist �, � ∈ DiGph(Set) such that
for all 5 , 6 : � → �′ in DiGph(Set),
if

∀0 : �→ � in DiGph(Set), 5 ◦ 0 = 6 ◦ 0 : �→ �′

and
∀1 : � → � in DiGph(Set), 5 ◦ 1 = 6 ◦ 1 : � → �′

then

5 = 6

58

Generalised elements

Idea:

Replace global elements 1
G
−→ - of -

by morphisms �
G
−→ - for � ∈ objC

59

Generalised elements

Idea:

Replace global elements 1
G
−→ - of -

by morphisms �
G
−→ - for � ∈ objC

Some people say that G is a generalised element of -
at stage� and use the notation G ∈� - . For instance,
〈〉� ∈� 1 is the unique generalised element of 1 at
stage� .

One may also think that G inhabits - in context � and
use the notation� ⊢ G : - ; for instance, � ⊢ 〈〉� : 1.

59

NB: One has to take into account “change of stage or
context”: for f : � → � ,

G ∈� - ⇒ G f ∈� -

� ⊢ G : - ⇒ � ⊢ G f : -

(cf. Kripke’s “possible world” semantics of intuitionistic and modal logics)

60

Opposite of a category

Given a category C, its opposite category Cop is defined
by interchanging the operations of dom and cod in C:

◮ objCop
, objC

◮ Cop(-,.) , C(.,-), for all objects - and .

◮ identity morphism on - ∈ objCop is
id- ∈ C(-,-) = Cop(-,-)

◮ composition in Cop of 5 ∈ Cop(-,.) and
6 ∈ Cop(.,/) is given by the composition
5 ◦ 6 ∈ C(/,-) = Cop(-,/) in C

(associativity and unity properties hold for this
operation because they do in C)

61

