What is category theory?

What we are probably seeking is a "purer" view of functions: a theory of functions in themselves, not a theory of functions derived from sets. What, then, is a pure theory of functions? Answer: category theory.

Dana Scott, *Relating theories of the* λ *-calculus*, p406

set theory gives an "element-oriented" account of mathematical structure, whereas

category theory takes a 'function-oriented" view – understand structures not via their elements, but by how they transform, i.e. via morphisms.

(Both theories are part of logic, broadly construed.)

Category Theory emerges

1945 Eilenberg[†] and MacLane[†]
General Theory of Natural Equivalences, Trans AMS 58, 231–294

(algebraic topology, abstract algebra)

- 1950s Grothendieck[†] (algebraic geometry)
- 1960s Lawvere[†] (logic and foundations)
- 1970s Johnstone, Joyal and Tierney[†] (elementary topos theory)
- 1980s Dana Scott, Plotkin (semantics of programming languages) Lambek[†] (linguistics)

Category Theory and Computer Science

"Category theory has...become part of the standard "tool-box" in many areas of theoretical informatics, from programming languages to automata, from process calculi to Type Theory."

> Dagstuhl Perpectives Workshop on Categorical Methods at the Crossroads April 2014

See http://www.appliedcategorytheory.org/events for recent examples of category theory being applied (not just in computer science).

This course

basic concepts of category theory

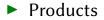
adjunction — natural transformation

applied to { typed lambda-calculus functional programming

Sets

Examples

Empty set: $0 = \emptyset = \{ \}$ Singleton sets: $1 = \{0\}, \{*\}$ Natural numbers: \mathbb{N}



The **cartesian product** of sets *X* and *Y* is the set of all *ordered pairings* (x, y) for $x \in X$ and $y \in Y$:

 $X \times Y = \{(x, y) \mid x \in X \land y \in Y\}$

The equality for ordered pairs is pointwise:

$$(x, y) = (x', y') \Leftrightarrow x = x' \land y = y'$$

The cartesian product comes equipped with first and second projection operations π_1 and π_2 satifying:

1. for all $x \in X$ and $y \in Y$,

$$\pi_1(x,y) = x \quad , \quad \pi_2(x,y) = y$$

2. for all $p \in X \times Y$,

 $(\pi_1 p, \pi_2 p) = p$

Example:

For $n \in \mathbb{N}$, $X^{n} = \begin{cases} \{ () \} &, \text{ if } n = 0 \\ X \times X^{m} &, \text{ if } n = m + 1 \end{cases}$

and, for $x_1, x_2, ..., x_{n-1}, x_n \in \mathbb{N}$, one writes $(x_1, ..., x_n)$ for $(x_1, (x_2, ..., (x_{n-1}, x_n) ...)) \in X^n$.

Functions

The **set of functions** from a set *X* to a set *Y*, for which we write $(X \Rightarrow Y)$ or Y^X , consists of all the single-valued and total relations from *X* to *Y*:

 $(X \Rightarrow Y) = \{ f \subseteq X \times Y \mid f \text{ is single-valued and total} \}$

Single-valued:

 $\forall x \in X, \forall y, y' \in Y, (x, y) \in f \land (x, y') \in f \Rightarrow y = y'$

Total:

$$\forall x \in X, \exists y \in Y, (x, y) \in f$$

Notation: We write $f : X \to Y$ or $X \xrightarrow{f} Y$ for $f \in (X \Rightarrow Y)$ and, for $x \in X$, we write f x or f(x) for the unique element y of Y such that $(x, y) \in f$.

The equality for functions is extensional:

 $f = g : X \to Y \iff \forall x \in X, \ f x = g x$

This is because

- 1. Assuming f = g, we have, for all $x \in X$, $(x, f x) \in g$ and so f x = g x.
- 2. Assuming $\forall x \in X$, f x = g x, we have

 $f = \{(x, y) \mid (x, y) \in f\} = \{(x, f x) \mid x \in X\} = \{(x, g x) \mid x \in X\}$ $= \{(x, y) \mid (x, y) \in g\} = g$

In other words, function extensionality reduces to the extensionality property of sets: two sets are equal iff they have the same elements.

Convention: We typically define functions $f : X \to Y$ by a *well-defined rule* that to each element $x \in X$ assigns a unique element $f(x) \in Y$.

Examples:

1. We define $id_X : X \to X$ by: $id_X(x) = x$ for all $x \in X$ 2. For $f : X \to Y$ and $q : Y \to Z$, we define $q \circ f : X \to Z$ by: $(q \circ f)(x) = q(f(x))$ for all $x \in X$ 3. We define app : $(X \Rightarrow Y) \times X \to Y$ by: app(f, x) = f(x) for all $f \in (X \Rightarrow Y)$ and $x \in X$ 4. For $f: Z \times X \to Y$, we define $\operatorname{cur}(f): Z \to (X \Longrightarrow Y)$ by: $(\operatorname{cur}(f) z)(x) = f(z, x)$ for all $z \in Z$ and $x \in X$

Sums

The **sum** of sets *X* and *Y* is their *disjoint union*:

 $X + Y = \{\iota_1(x) \mid x \in X\} \cup \{\iota_2(y) \mid y \in Y\}$

The sum comes equipped with first and second tagging operations $\iota_1 : X \to X + Y$ and $\iota_2 : Y \to X + Y$.

The equality for *tagged elements* is:

 $\iota_i(x) = \iota_j(y) \iff (i = j) \land (x = y)$

Sets in Grothendieck universes

A **Grothendieck universe** \mathcal{U} is a set of sets satisfying

- $\blacktriangleright X \in Y \in \mathcal{U} \Longrightarrow X \in \mathcal{U}$
- $\blacktriangleright X, Y \in \mathcal{U} \Longrightarrow \{X, Y\} \in \mathcal{U}$
- $\blacktriangleright X \in \mathcal{U} \Longrightarrow \mathscr{P}X \triangleq \{Y \mid Y \subseteq X\} \in \mathcal{U}$
- $X \in \mathcal{U} \land F : X \to \mathcal{U} \Rightarrow \{y \mid \exists x \in X, y \in Fx\} \in \mathcal{U}$ (hence also $X, Y \in \mathcal{U} \Rightarrow X \times Y \in \mathcal{U} \land (X \Rightarrow Y) \in \mathcal{U}$)

The above properties are satisfied by $\mathcal{U} = \emptyset$, but we will always assume

▶ $\mathbb{N} \in \mathcal{U}$

Algebras

<u>Monoids</u>

A **monoid** is a structure $\underline{M} = (M, \bullet, \iota)$ consisting of a set M equipped with a binary operation $_ \bullet _ : M \times M \to M$ and an element $\iota \in M$ that satisfy:

- ► the associativity law: $\forall x, y, z \in M, (x \bullet y) \bullet z = x \bullet (y \bullet z)$
- the unit laws:

 $\forall x \in M, \ \iota \bullet x = x = x \bullet \iota$

Examples:

1. Lists (List *X*, @, nil):

List X = set of finite lists of elements of X @ = append $\begin{pmatrix} \text{nil} @ \ell = \ell \\ (x :: \ell) @ \ell' = x :: (\ell @ \ell') \end{pmatrix}$ nil = empty list

2. Sequences $(X^{\star}, \cdot, \varepsilon)$:

 $X^{\star} = \bigcup_{n \in \mathbb{N}} X^{n}$ $\cdot = \text{concatenation}$ $((x_{1}, \dots, x_{m}) \cdot (y_{1}, \dots, y_{n}) = (x_{1}, \dots, x_{m}, y_{1}, \dots, y_{n}))$ $\varepsilon = ()$ 3. The set of **endomorphisms** on a set: $End(X) = (X \Rightarrow X, \circ, id_X)$ is a monoid.

In particular, the monoid End(1) is trivial.

A **monoid homomorphism** $h : \underline{M}_1 \to \underline{M}_2$ from a monoid $\underline{M}_1 = (M_1, \bullet_1, \iota_1)$ to a monoid $\underline{M}_2 = (M_2, \bullet_2, \iota_2)$ is a function $h : M_1 \to M_2$ such that

for all x, y ∈ M₁, h(x •₁ y) = h(x) •₂ h(y)
h(ι₁) = ι₂

Example: For all $f : X \to Y$,

 $\operatorname{map} f:\operatorname{List} X\to\operatorname{List} Y$

is a monoid homomorphism. (Check it.)

The **product** $\underline{M}_1 \times \underline{M}_2$ of monoids $\underline{M}_1 = (M_1, \bullet_1, \iota_1)$ and $\underline{M}_2 = (M_2, \bullet_2, \iota_2)$ is the structure

 $(M_1 \times M_2, \bullet, \iota)$

with

 $(x_1, x_2) \bullet (y_1, y_2) = (x_1 \bullet_1 y_1, x_2 \bullet_2 y_2)$

 $\iota = (\iota_1, \iota_2)$

and projections homomorphisms

$$\underline{M}_1 \xleftarrow{\pi_1} \underline{M}_1 \times \underline{M}_2 \xrightarrow{\pi_2} \underline{M}_2$$

given by $\pi_1(x_1, x_2) = x_1$ and $\pi_2(x_1, x_2) = x_2$.

Explore

- ? Is there a monoid of homomorphisms between monoids?
- ? What is the sum $\underline{M}_1 +_{Mon} \underline{M}_2$ of monoids \underline{M}_1 and \underline{M}_2 ?

Can you make sense of the following? $List(X) +_{Mon} List(Y) = List(X +_{Set} Y)$

Groups

A **group** is a structure $\underline{G} = (G, \neg, \bullet, \iota)$ consisting of a monoid (G, \bullet, ι) and a unary operation $\overline{-}: M \to M$ that satisfies:

• the inverse laws: $\forall x \in G, x \bullet \overline{x} = \iota = \overline{x} \bullet x$

A **group homomorphism** $h : \underline{G}_1 \to \underline{G}_2$ from a group $\underline{G}_1 = (G_1, \stackrel{-1}{}, \bullet_1, \iota_1)$ to a group $\underline{G}_2 = (G_2, \stackrel{-2}{}, \bullet_2, \iota_2)$ is a monoid homomorphism $h : (G_1, \bullet_1, \iota_1) \to (G_2, \bullet_2, \iota_2)$ such that

• for all
$$x \in G_1$$
, $h(\overline{x}^1) = \overline{h(x)}^2$

Examples:

The set of integers modulo a prime p

has a group structure.

► The set of automorphisms on a set Aut(X) = { f : X → X | f is a bijection } has a group structure.

 \mathbb{Z}_{p}

Definitions:

- A function $f : X \to Y$ is a **bijection** whenever $\forall y \in Y, \exists ! x \in X, f(x) = y$
- A function $f : X \to Y$ is an **isomorphism** whenever there exists a (necessarily unique) function $g : Y \to X$ (typically denoted f^{-1}) such that $g \circ f = id_X$ and $f \circ g = id_Y$.

Proposition. A function is a *bijection* if, and only if, it is an *isomorphism*.

Explore the above for homomorphisms between monoids and between groups.

Universal problems

 Vague problem: To manufacture a monoid out of a set in the most general or least constrained possible way.

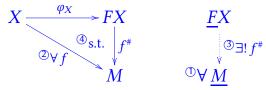
This is typically referred to as *freely generating* a monoid from a set.

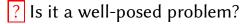
• Mathematical problem: For a set *X*, consider the *data* of interest to be given by a monoid $\underline{M} = (M, \bullet, \iota)$ together with a function $f : X \to M$. Given a set *X*,

1. construct data $\underline{FX} = (FX, \bullet_X, \iota_X)$ and $\varphi_X : X \to FX$ such that

1. for all data $\underline{M} = (M, \bullet, \iota)$ and $f : X \to M$, there exists a unique monoid homomorphism $f^{\#} : FX \to \underline{M}$ such that $f^{\#} \circ \varphi_X = f$.

In diagrammatic form:





- ? Does it have a solution?
- ? If so, how can we construct it?

Categories

A category C is an algebraic structure specified by

- ► a set obj C whose elements are called C-objects
- ► for each $X, Y \in obj C$, a set C(X, Y) whose elements are called C-morphisms from X to Y
- ► a function assigning to each $X \in obj C$ an element $id_X \in C(X, X)$ called the identity morphism for the C-object X
- ► a function assigning to each $f \in C(X, Y)$ and $g \in C(Y, Z)$ (where $X, Y, Z \in obj C$) an element $g \circ f \in C(X, Z)$ called the composition of C-morphisms f and g

satisfying

► associativity: for all $X, Y, Z, W \in obj C$, $f \in C(X, Y), g \in C(Y, Z)$ and $h \in C(Z, W)$

$$h \circ (g \circ f) = (h \circ g) \circ f$$

• unity: for all $X, Y \in obj C$ and $f \in C(X, Y)$

$$\operatorname{id}_Y\circ f=f=f\circ\operatorname{id}_X$$

Category of sets: Set

- obj Set = a fixed universe of sets
- Set-morphisms are functions: Set $(X, Y) = (X \Rightarrow Y)$
- Identities:

id_X

- Composition of $f \in \text{Set}(X, Y)$ and $g \in \text{Set}(Y, Z)$ is: $g \circ f$
- NB: Associativity and unity laws hold. (Check it.)

Category of monoids: Mon

- objects are monoids,
- morphisms are monoid homomorphisms,
- identities and composition are as for sets and functions.

Q: why is this well-defined?

A: because the set of functions that are monoid homomorphisms contains identity functions and is closed under composition.

Category of groups: Grp

- objects are groups,
- morphisms are group homomorphisms,
- identities and composition are as for sets and functions.

Q: why is this well-defined?

A: because the set of functions that are group homomorphisms contains identity functions and is closed under composition.

Conventions:

• Given a category C, one writes $f: X \to Y$ or $X \xrightarrow{f} Y$ or $Y \xleftarrow{f} X$ for

 $f \in \mathbf{C}(X, Y)$

in which case one says

object X is the domain of the morphism fobject Y is the codomain of the morphism fand writes

$$X = \operatorname{dom} f$$
 , $Y = \operatorname{cod} f$

NB: Which category **C** we are referring to is left implicit with this notation.

- The sets C(X, Y) are typically referred to as hom-sets and sometimes also denoted hom_C(X, Y) or simply hom(X, Y) when C is clear from the context.
- One often abbreviates $g \circ f$ as g f.
- Because of the associativity law, one unambigously writes

 $h \circ g \circ f$ or hgf

for either of the equal composites $h \circ (g \circ f) = h (g f)$ and $(h \circ g) \circ f = (h g) f$.

Alternative notations

Some people write

C for obj C id for id_X Hom_C(X, Y) for C(X, Y) X or 1_X for id_X

Most people use "applicative order" for morphism composition; some people use "diagrammatic order" and write

f; g for $g \circ f$