Introduction to Probability

Lecture 6: Marginals and Joint Distributions Mateja Jamnik, Thomas Sauerwald

University of Cambridge, Department of Computer Science and Technology email: {mateja.jamnik,thomas.sauerwald}@cl.cam.ac.uk

Motivation

Experiments often involve several random variables, and some of them may influence each other.

To this end, we will introduce:

- Joint/Marginal distribution of two (or more) variables
- Independence of two (or more) variables
- Covariance of two variables

For simplicity, we will mainly focus on discrete random variables.

Warm-Up Exercise

Example

Let $X_1, X_2 \in \{1, 2, \dots, 6\}$ be two independent rolls of an unbiased die. Let $S := X_1 + X_2$ and $M := \max\{X_1, X_2\}$. List the elements of the event $\{S = 7, M \le 5\}$ and deduce the probability.

Answer

Joint Probability

Joint Probability Mass Function —

The joint probability mass function of two discrete random variables X and Y is the function $p : \mathbb{R}^2 \to [0, 1]$, defined by:

$$p_{X,Y}(a,b) = \mathbf{P}[X = a, Y = b]$$
 for $-\infty < a, b < \infty$.

- Joint Distribution Function

The joint distribution function of two (discrete or continuous) random variables X and Y is the function $F: \mathbb{R}^2 \to [0, 1]$, defined by:

$$F_{X,Y}(a,b) = \mathbf{P}[X \le a, Y \le b]$$
 for $-\infty < a, b < \infty$.

— Marginal Distribution ——

Given a joint distribution $F_{X,Y}$ of two random variables X, Y, one obtains the marginal distribution of X for any a as follows:

$$F_X(a) = \mathbf{P}[X \le a] = \lim_{b \to \infty} F_{X,Y}(a,b).$$

Joint Distribution contains (much) more information than the two marginals!

Discrete Example 1

Example

Let $X_1, X_2 \in \{1, 2, ..., 6\}$ be independent rolls of an unbiased die. Let $S := X_1 + X_2$ and $M := \max\{X_1, X_2\}$. Compute the joint probability mass function p of S and M and the marginal distributions of S and M.

b2 3 4 5 6 $p_S(a)$ a1/360 0 0 1/360 2/362/361/362/360 3/362/362/364/361/362/362/365/36 2/362/366/360 2/361/362/362/365/36 0 2/362/364/360 10 0 0 1/362/363/3611 0 0 2/362/360 12 0 0 1/361/36 $p_M(b)$ 1/36 3/36 5/36 7/36 9/36 11/36

Discrete Example 2

Example

Suppose an urn contains balls numbered 1, 2, ..., N. We draw $1 \le n \le N$ balls uniformly and without replacement from the urn. Let $X_i \in \{1, 2, ..., N\}$ be the number of the ball drawn in the *i*-th step. What is the marginal distribution of X_i ?

Answer -

We first compute the joint distribution. For distinct a_1, a_2, \ldots, a_n ,

Fix *i* and consider the marginal distribution of X_i :

Joint Distributions of Continuous Variables

Definition

Random variables X and Y have a joint continuous distribution if for some function $f: \mathbb{R}^2 \to \mathbb{R}$ and for all numbers $a_1 \leq b_1$ and $a_2 \leq b_2$,

$$\mathbf{P}[a_1 \le X \le b_1, a_2 \le Y \le b_2] = \int_{a_1}^{b_1} \int_{a_2}^{b_2} f(x, y) \, dx \, dy.$$

The function f has to satisfy $f(x,y) \geq 0$ for all x and y, and $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y) dx dy = 1$. We call f the joint probability density.

As in one-dimensional case we switch from F to f by differentiating (or integrating):

$$F(a,b) = \int_{-\infty}^{a} \int_{-\infty}^{b} f(x,y) dx dy$$
 and $f(x,y) = \frac{\partial^{2}}{\partial x \partial y} F(x,y)$

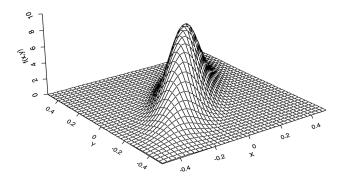
Example of a Joint Distribution of Continuous Random Variables

Consider the density:

$$f(x,y) = \frac{30}{\pi} \cdot e^{-50x^2 - 50y^2 + 80xy},$$

where $-\infty < x, y < \infty$.

This is an example of a so-called bivariate normal probability density function.



Source: Modern Introduction to Statistics

Dealing with Continuous Variables

Example (1/2) -

Suppose that the joint probability density of *X* and *Y* is given by

$$f(x,y) = \begin{cases} 2e^{-x}e^{-2y} & \text{for } 0 < x < \infty, 0 < y < \infty, \\ 0 & \text{otherwise}. \end{cases}$$

Compute (i) P[X > 1, Y < 1] and (ii) P[X < Y].

Answer

(i) We first compute:

$$P[X > 1, Y < 1] = \int_0^1 \int_1^\infty 2e^{-x}e^{-2y} dxdy$$

Dealing with Continuous Variables (cont.)

Example (2/2) -

Suppose that the joint probability density of X and Y is given by

$$f(x,y) = \begin{cases} 2e^{-x}e^{-2y} & \text{for } 0 < x < \infty, 0 < y < \infty, \\ 0 & \text{otherwise}. \end{cases}$$

Compute (i) P[X > 1, Y < 1] and (ii) P[X < Y].

Answer

(ii) We have:

$$P[X < Y] = \int_0^\infty \int_0^y 2e^{-x}e^{-2y} dxdy$$