Introduction to Probability

Lecture 4: More discrete distributions – Poisson, Geometric, Negative Binomial, Hypergeometric Mateja Jamnik, Thomas Sauerwald

University of Cambridge, Department of Computer Science and Technology email: {mateja.jamnik,thomas.sauerwald}@cl.cam.ac.uk

Outline

Poisson discrete random variable

Geometric discrete random variable

Negative binomial discrete random variable

Hypergeometric discrete random variable

Preliminaries:

The natural exponent e -

e is a mathematical constant AKA the Euler number. e is very important for exponential functions. Here are some important identities:

$$e \approx 2.71828$$

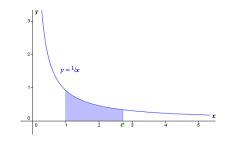
$$e = \sum_{n=0}^{\infty} \frac{1}{n!}$$

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n$$

$$e^{-\lambda} = \lim_{n \to \infty} \left(1 - \frac{\lambda}{n} \right)^n$$

$$e^r = \lim_{n \to \infty} \left(1 + \frac{r}{n} \right)^n$$

$$e^r = \sum_{n=0}^{\infty} \frac{r^r}{n}$$



Binomial RV example: large n, small p

We are trying to predict footfall in a store. We know, based on previous data, that on average 8 people enter the store per hour. What is the probability of *k* people entering the store in the next 1 hour?

1. Break an hour into minutes.

What if 2 people enter in the same minute?

- At each minute, independent Bernoulli trial with 1 for a person entering the store and 0 for nobody entering the store.
- X is a Binomial RV: # people entering in an hour, so $\mathbf{E}[X] = np = \lambda = 8$.

■
$$X \sim Bin(n = 60, p = \frac{\lambda}{n})$$
, so $\mathbf{P}[X=k] = \binom{n}{k} p^k (1-p)^{n-k} = \binom{60}{k} \left(\frac{8}{60}\right)^k \left(1 - \frac{8}{60}\right)^{n-k}$

2. Break an hour into milliseconds.

(What if 2 people enter in the same millisecond?)

- At each millisecond, independent Bernoulli trial: 1 for enter, 0 for not enter.
- X is a Binomial RV: # people entering in an hour, so $\mathbf{E}[X] = np = \lambda = 8$.

•
$$X \sim Bin(n = 3600000, p = \frac{\lambda}{n})$$
, so $\mathbf{P}[X=k] = \binom{n}{k} \left(\frac{\lambda}{n}\right)^k \left(1 - \frac{\lambda}{n}\right)^{n-k}$

- 3. Break an hour into infinitely small units.
 - At each **unit**, independent Bernoulli trial: 1 for enter, 0 for not enter.
 - *X* is a Binomial RV: # people entering in an hour, so $\mathbf{E}[X] = np = \lambda = 8$.

•
$$X \sim Bin(n, p = \frac{\lambda}{n})$$
, thus $P[X=k] = \lim_{n \to \infty} {n \choose k} \left(\frac{\lambda}{n}\right)^k \left(1 - \frac{\lambda}{n}\right)^{n-k}$

Computing Binomial in the limit

$$\mathbf{P}[X = k] = \lim_{n \to \infty} {n \choose k} \left(\frac{\lambda}{n}\right)^k \left(1 - \frac{\lambda}{n}\right)^{n-k} = \lim_{\text{expand}} \frac{n!}{k!(n-k)!} \frac{\lambda^k}{n^k} \frac{\left(1 - \frac{\lambda}{n}\right)^n}{\left(1 - \frac{\lambda}{n}\right)^k}$$

$$= \lim_{\text{rearrange}} \lim_{n \to \infty} \frac{n!}{n^k(n-k)!} \frac{\lambda^k}{k!} \frac{\left(1 - \frac{\lambda}{n}\right)^n}{\left(1 - \frac{\lambda}{n}\right)^k} = \lim_{n \to \infty} \frac{n!}{n^k(n-k)!} \frac{\lambda^k}{k!} \frac{e^{-\lambda}}{\left(1 - \frac{\lambda}{n}\right)^k}$$

$$= \lim_{\text{expand}} \lim_{n \to \infty} \frac{n(n-1)\cdots(n-k+1)}{n^k} \frac{\lambda^k}{k!} \frac{e^{-\lambda}}{\left(1 - \frac{\lambda}{n}\right)^k}$$
as $n \to \infty$

$$\frac{n(n-1)\cdots(n-k+1)}{n^k} \approx \frac{n^k}{n^k} = 1$$

$$\left(1 - \frac{\lambda}{n}\right)^n \approx e^{-\lambda} \text{ because } e^{-\lambda} = \lim_{n \to \infty} \left(1 - \frac{\lambda}{n}\right)^n \text{ thus we have}$$

$$\mathbf{P}[X=k] = (1)\frac{\lambda^k}{k!}\frac{e^{-\lambda}}{1} = \frac{\lambda^k}{k!}e^{-\lambda}$$

$$k \text{ people entering the store in the next 1 hour is:}$$

$$\mathbf{P}[X=k] = \lim_{n \to \infty} \binom{n}{k} \left(\frac{\lambda}{n}\right)^k \left(1 - \frac{\lambda}{n}\right)^{n-k} = \frac{\lambda^k}{k!}e^{-\lambda}$$

Therefore, in our store footfall example: the probability of k people entering the store in the next 1 hour is:

$$\mathbf{P}[X=k] = \lim_{n \to \infty} \binom{n}{k} \left(\frac{\lambda}{n}\right)^k \left(1 - \frac{\lambda}{n}\right)^{n-k} = \frac{\lambda^k}{k!} e^{-\lambda}$$

Poisson

Poisson discrete random variable

A Poisson RV X approximates Binomial where n is large, p is small, and $\lambda = np$ is "moderate". Thus we no longer need to know n and p, we only need to provide **rate** λ . X is the number of successes over the duration of the experiment.

$$X\sim Pois(\lambda)$$

PMF:
$$\mathbf{P}[X = k] = \frac{\lambda^k}{k!}e^{-\lambda}$$

Expectation:
$$\mathbf{E}[X] = \lambda$$

Variance: $\mathbf{V}[X] = \lambda$

Examples: # earthquakes in a given year, # goals scored during a 90 minute football game, # misprints per page in a book, # emails per day.

Key idea: Divide time into a **large number** of small increments. Assume that during each increment, there is some **small probability** of the event happening (independent of other increments).

Earthquake example

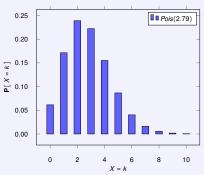
Example

Suppose there are an average of 2.79 major earthquakes in the world each year. What is the probability of getting 3 major earthquakes next year?

Answer

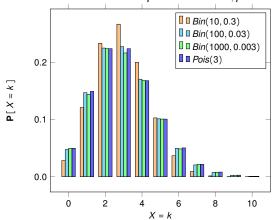
Define RVs:
$$\lambda = 2.79, k = 3, X \sim Pois(2.79)$$

Solve:
$$P[X = k] = \frac{\lambda^k}{k!}e^{-\lambda} = P[X = 3] = \frac{2.79^3}{3!}e^{-2.79} \approx 0.23$$



Poisson paradigm

- Poisson approximates Binomial when n is large, p is small, and $\lambda = np$ is "moderate".
- Different interpretations of "moderate". Commonly accepted ranges are:
 - n > 20 and p < 0.05
 n > 100 and p < 0.1
- Poisson is Binomial in the limit: $\lambda = np$ where $n \to \infty, p \to 0$.



PMF:
$$= k \in \{0, 1, 2, \dots \infty\}; \mathbf{P}[X = k] = \frac{\lambda^k}{k!} e^{-\lambda}$$

$$\mathbf{E}[X] = \sum_{k=0}^{\infty} k \frac{\lambda^k}{k!} e^{-\lambda} = \sum_{k=1}^{\infty} \frac{\lambda^k}{(k-1)!} e^{-\lambda} =$$

$$= \lambda \sum_{k=1}^{\infty} \frac{\lambda^{k-1}}{(k-1)!} e^{-\lambda} \text{ (let } i = k-1)$$

$$= \lambda e^{-\lambda} \sum_{i=0}^{\infty} \frac{\lambda^i}{i!} = \lambda e^{-\lambda} e^{\lambda} = \lambda$$

$$\mathbf{E}[X^{2}] = \sum_{k=0}^{\infty} k^{2} \frac{\lambda^{k}}{k!} e^{-\lambda} = \lambda \sum_{k=1}^{\infty} k \frac{\lambda^{k-1}}{(k-1)!} e^{-\lambda} \text{ (let } i = k-1)$$

$$= \lambda \sum_{i=0}^{\infty} (i+1) \frac{\lambda^{i}}{i!} e^{-\lambda} = \lambda \left(\sum_{i=0}^{\infty} i \frac{\lambda^{i}}{i!} e^{-\lambda} + \sum_{i=0}^{\infty} \frac{\lambda^{i}}{i!} e^{-\lambda} \right) =$$

$$= \lambda \sum_{i=0}^{\infty} (i+1) \frac{\lambda^{i}}{i!} e^{-\lambda} = \lambda \left(\sum_{i=0}^{\infty} i \frac{\lambda^{i}}{i!} e^{-\lambda} + \sum_{i=0}^{\infty} \frac{\lambda^{i}}{i!} e^{-\lambda} \right) =$$

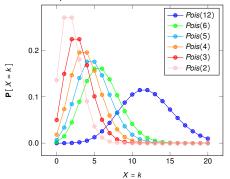
$$=\lambda(\lambda+1)$$
 thus

$$\mathbf{V}[X] = \mathbf{E}[X^2] - (\mathbf{E}[X])^2 = \lambda(\lambda + 1) - \lambda^2 = \lambda$$

$$\mathbf{E}\left[X^{k}\right] = \lambda \mathbf{E}\left[\left(X+1\right)^{k-1}\right]$$

Bernoulli, Poisson, and random processes

- A Poisson process is a model for a series of discrete events where the average time between events is known, but the exact timing of events is random.
 - The arrival of an event is independent of the event before (waiting time between events is memoryless).
 - The average rate (events per time period) is constant.
 - Two events cannot occur at the same time: each sub-interval of a Poisson process is a Bernoulli trial that is either a success or a failure.
- Example: your website goes down on average twice per 60 days; calling a help centre; movements of stock price...



Outline

Poisson discrete random variable

Geometric discrete random variable

Negative binomial discrete random variable

Hypergeometric discrete random variable

Geometric

Geometric discrete random variable -

X is a geometric RV if X is a number of independent Bernoulli trials until the first success, and p is the probability of success on each Bernoulli trial.

$$X{\sim}Geo(p)$$

PMF: **P**[
$$X = n$$
] = $(1 - p)^{n-1}p$

Expectation:
$$\mathbf{E}[X] = \frac{1}{p}$$

Variance:
$$\mathbf{V}[X] = \frac{1-p}{p^2}$$

Examples: tossing a coin (P[head] = p) until first heads appears, generating bits with P[bit = 1] = p until first 1 is generated.

Geometric RV properties

PMF (E_i is the event that the *i*-th trial succeeds):

$$\mathbf{P}[X = n] = \mathbf{P}[E_1^c E_2^c \dots E_{n-1}^c E_n] =$$

$$= \mathbf{P}[E_1^c] \mathbf{P}[E_2^c] \dots \mathbf{P}[E_{n-1}^c] \mathbf{P}[E_n] =$$

$$= (1 - p)^{n-1} p$$

CDF ($\mathbf{P}[X > n]$) is the probability that at least the first n trials fail):

$$\mathbf{P}[X \le n] = 1 - \mathbf{P}[X > n] =$$

$$= 1 - \mathbf{P}[E_1^c E_2^c \dots E_n^c] =$$

$$= 1 - \mathbf{P}[E_1^c] \mathbf{P}[E_2^c] \dots \mathbf{P}[E_n^c] =$$

$$= 1 - (1 - p)^n$$

Die example

Example

You roll a fair 6-sided die until it comes up with # 6. What is the probability that it will take 3 rolls?

Answer

Let X be a RV for # of rolls. Probability for any # on die is $\frac{1}{6}$.

Define RVs:
$$X \sim Geo(\frac{1}{6})$$
, want **P**[$X = 3$].

Solve:
$$\mathbf{P}[X=3] = (1-p)^{n-1}p$$
 where $n=3, p=\frac{1}{6}$
$$= \left(1-\frac{1}{6}\right)^{3-1}\frac{1}{6} = \left(\frac{5}{6}\right)^2\frac{1}{6} = \frac{25}{216}$$

$$P[X = 3] = P[not 6, not 6, 6] = \frac{5}{6} \frac{5}{6} \frac{1}{6} = \frac{25}{216}$$

$$P[X = n] = P[not 6(n-1)times, 6] = \left(\frac{5}{6}\right)^{n-1} \left(\frac{1}{6}\right)$$

Outline

Poisson discrete random variable

Geometric discrete random variable

Negative binomial discrete random variable

Hypergeometric discrete random variable

Negative binomial

Negative binomial discrete random variable

X is a negative binomial RV if X is the number of independent Bernoulli trials until r successes and p is the probability of success on each trial.

Range:
$$\{r, r + 1, ...\}$$

PMF: **P**[
$$X = n$$
] = $\binom{n-1}{r-1} (1-p)^{n-r} p^r$

Expectation:
$$\mathbf{E}[X] = \frac{r}{p}$$

Variance: **V**[X] =
$$\frac{r(1-p)}{p^2}$$

Examples: tossing a coin until r-th heads appears, generating bits until the first r 1's are generated.

Note: Geo(p) = NegBin(1, p).

NegBin example

Example (not real life!)

A PhD student is expected to publish 2 papers to graduate. A conference accepts each paper randomly and independently with probability p = 0.25. On average, how many papers will the student need to submit to a conference in order to graduate?

Answer

Let X be # submissions required to get 2 acceptances. Thus $X \sim NegBin(r = 2, p = 0.25)$. So,

E[
$$X$$
] = $\frac{r}{p}$ = $\frac{2}{0.25}$ = 8

Adding NegBin example

Example

Let $X \sim NegBin(m, p)$ and $Y \sim NegBin(n, p)$ be two independent RVs. Define a new RV as Z = X + Y. Find PMF of Z.

Answer

- Need to show that $Z \sim NegBin(m + n, p)$.
- Consider the sequence of independent events tossing a coin with P[heads] = p.
- Let X be a RV for # of coin tosses until m heads are observed. Thus $X \sim NegBin(m, p)$.
- Now, continue to toss a coin after m heads are observed, until n more heads are observed. Thus, for this part of the sequence, Y ~ NegBin(n, p).
- Looking at it from the beginning we tossed independently the coin until we observed m + n heads, thus Z = X + Y and thus $Z \sim NegBin(m + n, p)$.
- Note: if X₁, X₂,... X_m are m independent Geo(p) RVs, then the RV X = X₁ + X₂ + ··· + X_m has NegBin(m, p) distribution.

Outline

Poisson discrete random variable

Geometric discrete random variable

Negative binomial discrete random variable

Hypergeometric discrete random variable

Hypergeometric

Hypergeometric discrete random variable

X is a hypergeometric RV that samples n objects, without replacement, with i successes (random draw for which the object drawn has a specified feature), from a finite population of size N that contains exactly m objects with that feature.

$$X{\sim}Hyp(N,n,m)$$

Range:
$$\{0, 1, ..., n\}$$

PMF:
$$\mathbf{P}[X = i] = \frac{\binom{m}{i}\binom{N-m}{n-i}}{\binom{N}{n}}$$

Expectation:
$$\mathbf{E}[X] = n\frac{m}{N}$$

Variance:
$$\mathbf{V}[X] = n \frac{m}{N} \left(1 - \frac{m}{N}\right) \left(1 - \frac{n-1}{N-1}\right)$$

Example: an urn has N balls of which m are white and N-m are black; we take a random sample **without replacement** of size n and measure X: # of white balls in the sample.

Survey sampling

Example

A street has 40 houses of which 5 houses are inhabited by families with an income below the poverty line. In a survey, 7 houses are sampled at random from this street. What is the probability that: (a) none of the 5 families with income below poverty line are sampled? (b) 4 of them are sampled? (c) no more than 2 are sampled? (d) at least 3 are sampled?

Answer

Let *X*: # of families sampled which are below the poverty line.

$$X \sim Hyp(N = 40, n = 7, m = 5).$$

(a)
$$\mathbf{P}[X=0] = \frac{\binom{5}{0}\binom{40-5}{7-0}}{\binom{40}{7}} = \frac{\binom{35}{7}}{\binom{40}{7}} \approx 0.36$$

(b) **P**[
$$X = 4$$
] = $\frac{\binom{5}{4}\binom{40-5}{7-4}}{\binom{40}{7}}$

(c)
$$P[X \le 2] = P[X = 0] + P[X = 1] + P[X = 2]$$

(d)
$$P[X \ge 3] = 1 - P[X \le 2]$$

Summary of discrete RV

	Ber(p)	Bin(n,p)	$Pois(\lambda)$	Geo(p)	NegBin(r,p)	Hyp(N, n, m)
PMF	P [X=1]=	$ \mathbf{P}[X = k] = \binom{n}{k} p^k (1-p)^{n-k} $	$\mathbf{P}[X=k] = \frac{\lambda^k}{k!}e^{-\lambda}$	$\mathbf{P}[X=n] = (1-p)^{n-1}p$	$\mathbf{P}[X = n] = \binom{n-1}{r-1} (1-p)^{n-r} p^r$	$\mathbf{P}[X=i] = \frac{\binom{m}{i}\binom{N-m}{n-i}}{\binom{N}{i}}$
E [X]	p	пр	λ	$\frac{1}{p}$	<u>r</u> p	$n\frac{m}{N}$
v [X]	p(1-p)	np(1-p)	λ	$\frac{1-p}{p^2}$	$\frac{r(1-p)}{p^2}$	$n\frac{m}{N}\left(1-\frac{m}{N}\right)\left(1-\frac{n-1}{N-1}\right)$
Descr.	1 experiment with prob p of success	n independent trials with prob p of success	# successes over experiment duration, $\lambda = np$ rate of success	# independent trials until first success	# independent trials until r successes	# successes of drawing item with a feature (without replacement) in a sample of size n from a population of size N with m items with the feature