Introduction to Probability

Lecture 2: Random variables, probability mass function, expectation

Mateja Jamnik, Thomas Sauerwald

University of Cambridge, Department of Computer Science and Technology email: {mateja.jamnik,thomas.sauerwald}@cl.cam.ac.uk

Probability mass function

Cumulative distribution function

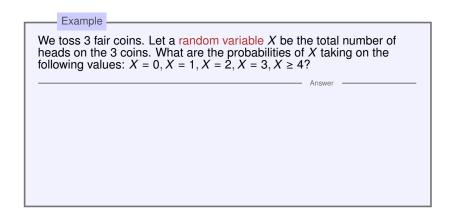
Expectation

- We can interpret X as a quantity whose value depends on the outcome of an experiment (some probabilistic process).
 - Roll two dice, X: sum of dice
 - Toss 3 coins, X: number of heads
 - Give a student a test, X: score
 - Stock market index

- We can interpret X as a quantity whose value depends on the outcome of an experiment (some probabilistic process).
 - Roll two dice, X: sum of dice
 - Toss 3 coins, X: number of heads
 - Give a student a test, X: score
 - Stock market index
- Or can think of *X* as a variable in a programming language that takes on values, has a type, and has a domain over which it is applicable.

- We can interpret *X* as a quantity whose value depends on the outcome of an experiment (some probabilistic process).
 - Roll two dice, X: sum of dice
 - Toss 3 coins, X: number of heads
 - Give a student a test, X: score
 - Stock market index
- Or can think of *X* as a variable in a programming language that takes on values, has a type, and has a domain over which it is applicable.
- Many different types of RV: indicator, binary, choice, Bernoulli, etc.

- We can interpret *X* as a quantity whose value depends on the outcome of an experiment (some probabilistic process).
 - Roll two dice, X: sum of dice
 - Toss 3 coins, X: number of heads
 - Give a student a test, X: score
 - Stock market index
- Or can think of *X* as a variable in a programming language that takes on values, has a type, and has a domain over which it is applicable.
- Many different types of RV: indicator, binary, choice, Bernoulli, etc.
- Random variable can be discrete or continuous:
 - X has finitely many possible values: discrete.
 - X has every integer as a possible value: discrete.
 - X amount of time it takes to finish a race: continuous (possible value: $\{t: 0 \le t < \infty\} = [0, \infty)$).



random variables ≠ events

Tossing 3 fair coins example			
X = x	P [<i>X</i> = <i>x</i>]	Set of outcomes	Possible event E
<i>X</i> = 0	$\frac{1}{8}$	$\{(T, T, T)\}$	Toss 0 heads
X = 1	$\frac{3}{8}$	$\{(H, T, T), (T, H, T), (T, T, H)\}$	Toss exactly 1 head
<i>X</i> = 2	$\frac{3}{8}$	$\{(H,H,T),(T,H,H),(H,T,H)\}$	Event where $X = 2$
			Toss exactly 2 heads
<i>X</i> = 3	$\frac{1}{8}$	$\{(H, H, H)\}$	Toss 0 tails
$X \geq 4$	0	{}	Toss 4 or more heads

We can define events by condition of the value of a random variable (RV takes on values that satisfy a numerical test).

Tossing a coin has the probability *p* that it comes up heads. Toss a coin 5 times. Let *X*: the number of heads in 5 tosses. What is the range of *X* (i.e., what are the values that *X* can take on with non-zero probability)? What is P[X = k] where *k* is in the range of *X*?

Answe

Notice that each coin toss is an independent trial.

Probability mass function

Cumulative distribution function

Expectation

Discrete random variable -

A random variable X is discrete if its range has countably many values

X = x where $x \in \{x_1, x_2, x_3, \ldots\}$

Discrete random variable -

A random variable X is discrete if its range has countably many values

X = x where $x \in \{x_1, x_2, x_3, \ldots\}$

Probability mass function ______

The probability mass function (PMF) of a discrete random variable X is a function p(a) of X that maps possible outcomes of a random variable to the corresponding probabilities:

$$p(a) = \mathbf{P}[X = a] = p_X(a)$$

Discrete random variable -

A random variable X is discrete if its range has countably many values

$$X = x$$
 where $x \in \{x_1, x_2, x_3, \ldots\}$

Probability mass function ——

The probability mass function (PMF) of a discrete random variable X is a function p(a) of X that maps possible outcomes of a random variable to the corresponding probabilities:

$$p(a) = \mathbf{P}[X = a] = p_X(a)$$

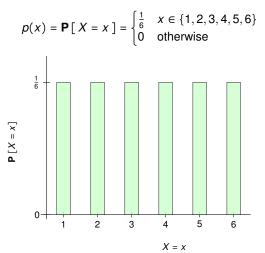
Recall that probabilities must sum to 1: $\sum_{i=1}^{\infty} p(a_i) = 1$.

- Let *X* be a RV representing a single die roll.
- Range of X: {1,2,3,4,5,6}, thus X is a discrete RV.

- Let *X* be a RV representing a single die roll.
- Range of X : {1,2,3,4,5,6}, thus X is a discrete RV.
- PMF of X:

$$p(x) = \mathbf{P}[X = x] = \begin{cases} \frac{1}{6} & x \in \{1, 2, 3, 4, 5, 6\} \\ 0 & \text{otherwise} \end{cases}$$

- Let *X* be a RV representing a single die roll.
- Range of X : {1,2,3,4,5,6}, thus X is a discrete RV.
- PMF of X:



- Let *Y* be a RV representing the sum of two independent dice rolls.
- Range of *Y* : {2, 3, ..., 11, 12}.

- Let Y be a RV representing the sum of two independent dice rolls.
- Range of *Y* : {2, 3, ..., 11, 12}.
- PMF of Y:

$$p(y) = \mathbb{P}[Y = y] = \begin{cases} \frac{y-1}{36} & y \in \mathbb{Z}, 2 \le y \le 6\\ \frac{13-y}{36} & y \in \mathbb{Z}, 7 \le y \le 12\\ 0 & \text{otherwise} \end{cases}$$

- Let *Y* be a RV representing the sum of two independent dice rolls.
- Range of *Y* : {2, 3, . . . , 11, 12}.
- PMF of Y:

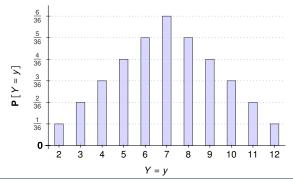
$$p(y) = \mathbb{P}[Y = y] = \begin{cases} \frac{y-1}{36} & y \in \mathbb{Z}, 2 \le y \le 6\\ \frac{13-y}{36} & y \in \mathbb{Z}, 7 \le y \le 12\\ 0 & \text{otherwise} \end{cases}$$

• Check
$$\sum_{y=2}^{12} p(y) = 1$$
.

- Let *Y* be a RV representing the sum of two independent dice rolls.
- Range of Y: {2,3,...,11,12}.
- PMF of Y:

$$p(y) = \mathbb{P}[Y = y] = \begin{cases} \frac{y-1}{36} & y \in \mathbb{Z}, 2 \le y \le 6\\ \frac{13-y}{36} & y \in \mathbb{Z}, 7 \le y \le 12\\ 0 & \text{otherwise} \end{cases}$$

• Check
$$\sum_{y=2}^{12} p(y) = 1$$
.



Let possible values of $X = \{a_1, a_2, a_3, \ldots\}$.

1. By Axiom 1: $0 \le p(a_i) \le 1$.

Let possible values of $X = \{a_1, a_2, a_3, \ldots\}$.

- 1. By Axiom 1: $0 \le p(a_i) \le 1$.
- 2. p(a) = 0 if a is not a possible value.

Let possible values of $X = \{a_1, a_2, a_3, \ldots\}$.

1. By Axiom 1: $0 \le p(a_i) \le 1$.

2. p(a) = 0 if a is not a possible value.

3. By Axiom 3:
$$\sum_{i=1}^{\infty} p(a_i) = 1$$
.
 $\sum_{i=1}^{\infty} p(a_i) = \sum_{i=1}^{\infty} \mathbf{P}[X = a_i] = \mathbf{P}\left[\bigcup_{i=1}^{\infty} \{X = a_i\}\right] = \mathbf{P}[S] = 1$

Let possible values of $X = \{a_1, a_2, a_3, \ldots\}$.

1. By Axiom 1: $0 \le p(a_i) \le 1$.

2. p(a) = 0 if a is not a possible value.

3. By Axiom 3:
$$\sum_{i=1}^{\infty} p(a_i) = 1$$
.
 $\sum_{i=1}^{\infty} p(a_i) = \sum_{i=1}^{\infty} \mathbf{P} [X = a_i] = \mathbf{P} \left[\bigcup_{i=1}^{\infty} \{X = a_i\} \right] = \mathbf{P} [S] = 1$

4. Notice that everything to do with discrete RVs is expressed in terms of (finite or infinite) sum.

Let possible values of $X = \{a_1, a_2, a_3, \ldots\}$.

1. By Axiom 1: $0 \le p(a_i) \le 1$.

2. p(a) = 0 if a is not a possible value.

3. By Axiom 3:
$$\sum_{i=1}^{\infty} p(a_i) = 1$$
.
 $\sum_{i=1}^{\infty} p(a_i) = \sum_{i=1}^{\infty} \mathbf{P} [X = a_i] = \mathbf{P} \left[\bigcup_{i=1}^{\infty} \{X = a_i\} \right] = \mathbf{P} [S] = 1$

- 4. Notice that everything to do with discrete RVs is expressed in terms of (finite or infinite) sum.
- 5. For continuous RVs, these sums are replaced by integrals.

Probability mass function

Cumulative distribution function

Expectation

Another useful way to analyse probabilities.

Cumulative distribution function — The cumulative distribution function (CDF) of a random variable X is defined as

 $F(a) = F_X(a) = \mathbf{P}[X \le a]$ where $-\infty < a < \infty$

For a **discrete** random variable X, the CDF is

$$F(a) = \mathbf{P}[X \le a] = \sum_{\text{all } x \le a} p(x)$$

Another useful way to analyse probabilities.

Cumulative distribution function The cumulative distribution function (CDF) of a random variable X is defined as $F(a) = F_X(a) = \mathbf{P}[X \le a]$ where $-\infty < a < \infty$ For a **discrete** random variable X, the CDF is $F(a) = \mathbf{P}[X \le a] = \sum_{a \mid x \le a} p(x)$

Note that for a discrete RV the CDF is a step function, i.e., the value of *F* is constant in the intervals (x_{i-1}, x_i) and then takes a step of size $p(x_i)$ at x_i .

• Let the PMF for X be given by $p(1) = \frac{1}{4}$, $p(2) = \frac{1}{2}$, $p(3) = \frac{1}{8}$, $p(4) = \frac{1}{8}$.

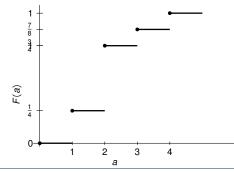
- Let the PMF for X be given by $p(1) = \frac{1}{4}$, $p(2) = \frac{1}{2}$, $p(3) = \frac{1}{8}$, $p(4) = \frac{1}{8}$.
- Then CDF is:

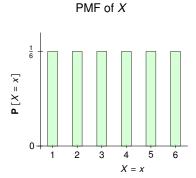
$$F(a) = \begin{cases} 0 & a < 1\\ \frac{1}{4} & 1 \le a < 2\\ \frac{3}{4} & 2 \le a < 3\\ \frac{7}{8} & 3 \le a < 4\\ 1 & 4 \le a \end{cases}$$

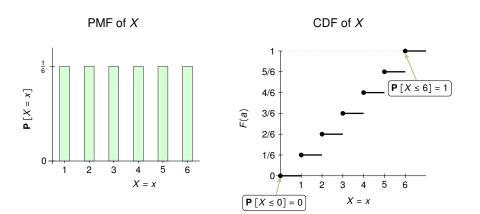
- Let the PMF for X be given by $p(1) = \frac{1}{4}$, $p(2) = \frac{1}{2}$, $p(3) = \frac{1}{8}$, $p(4) = \frac{1}{8}$.
- Then CDF is:

$$F(a) = \begin{cases} 0 & a < 1 \\ \frac{1}{4} & 1 \le a < 2 \\ \frac{3}{4} & 2 \le a < 3 \\ \frac{7}{8} & 3 \le a < 4 \\ 1 & 4 \le a \end{cases}$$

Graphical depiction of function:





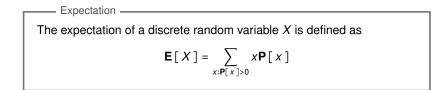


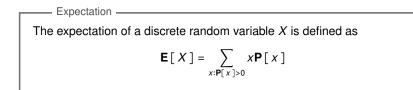
- 1. $0 \le F(x) \le 1$ for all x
- $2. \lim_{x \to -\infty} F(x) = 0$
- 3. $\lim_{x\to\infty}F(x)=1$
- 4. F(x) is a non-decreasing function of x (if $x_1 < x_2$ then $F(x_1) \le F(x_2)$)

Probability mass function

Cumulative distribution function

Expectation





- Expectation is the average value of the random variable over many repetitions of the experiment it represents.
- It is the sum over all values of X = x that have non-zero probability.
- AKA: mean, expected value, weighted average, centre of mass, first moment.

What is the expected value of a 6-sided die roll (i.e., what is the average value of a die roll)?

1. Define random variables:

X = RV for value of roll

$$\mathbf{P}[X = x] = \begin{cases} \frac{1}{6} & x \in \{1, \dots, 6\} \\ 0 & \text{otherwise} \end{cases}$$

2. Solve:

Example of school classes

Example A school has 3 classes with 5, 10 and 150 students. What is the average class size? Interpretation 1: Randomly choose a class with equal probability. Thus, X = size of chosen classInterpretation 2: Randomly choose a student with equal probability. Thus. Y = size of chosen class

This is a general phenomenon: it occurs because the more students are in a class, the more likely it is that a randomly chosen student would be in that class. As a result, bigger classes are given more weight than smaller classes.

A roulette wheel has 36 places numbered from 1 to 36. In addition, 18 of them are coloured red and the other 18 are coloured black. A ball is thrown to take one of 36 places. A gambler can bet:

- on the colour of the place that the ball takes. A correct, either red or black, place wins them a 1 to 1 ratio payout;
- on the number of the place that the ball takes. A correct number wins them a 35 to 1 ratio payout.

What is the expected value if a gambler bets on

- 1. the colour of the place in the roulette;
- 2. the number of the place in the roulette that the ball will fall.

Are the two different betting games fair?

Answe

Example of Roulette Version 1 Cont.

Example

What is the expected value if a gambler bets on

1. the colour of the place in the roulette;

2. the number of the place in the roulette that the ball will fall.

Are the two different betting games fair?

1. Let E_X : bet on colour.

2. Let E_Y : bet on number.

Example				
Change the game to add two green places, 0 and 00. Now there are a total of 38 places. Payouts are the same as before. What are the expected values now?				
1. Let E_X : bet on red colour.	Answer			
2. Let E_Y : bet on number 10.				