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What is a random variable?

A random variable X is a function from the sample space to the real
numbers.

Random variable

We can interpret X as a quantity whose value depends on the outcome of
an experiment (some probabilistic process).

Roll two dice, X : sum of dice
Toss 3 coins, X : number of heads
Give a student a test, X : score
Stock market index

Or can think of X as a variable in a programming language that takes on
values, has a type, and has a domain over which it is applicable.

Many different types of RV: indicator, binary, choice, Bernoulli, etc.
Random variable can be discrete or continuous:

X has finitely many possible values: discrete.
X has every integer as a possible value: discrete.
X amount of time it takes to finish a race: continuous (possible value:
{t ∶ 0 ≤ t < ∞} = [0,∞)).
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Examples of random variables

We toss 3 fair coins. Let a random variable X be the total number of
heads on the 3 coins. What are the probabilities of X taking on the
following values: X = 0,X = 1,X = 2,X = 3,X ≥ 4?

Answer

1. P [X = 0 ] = 1
8 where set of outcomes is {(T ,T ,T )}

2. P [X = 1 ] = 3
8 where set of outcomes is {(H,T ,T ), (T ,H,T ), (T ,T ,H)}

3. P [X = 2 ] = 3
8 where set of outcomes is {(H,H,T ), (T ,H,H), (H,T ,H)}

4. P [X = 3 ] = 1
8 where set of outcomes is {(H,H,H)}

5. P [X ≥ 4 ] = 0 where set of outcomes is {}

Example

Intro to Probability Random variable 4



Random variables are NOT events

random variables ≠ events

Tossing 3 fair coins example

X = x P [X = x ] Set of outcomes Possible event E

X = 0 1
8

{(T ,T ,T )} Toss 0 heads

X = 1 3
8

{(H,T ,T ), (T ,H,T ), (T ,T ,H)} Toss exactly 1 head

X = 2 3
8

{(H,H,T ), (T ,H,H), (H,T ,H)} Event where X = 2

Toss exactly 2 heads

X = 3 1
8

{(H,H,H)} Toss 0 tails

X ≥ 4 0 {} Toss 4 or more heads

We can define events by condition of the value of a random variable (RV
takes on values that satisfy a numerical test).
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Another example

Tossing a coin has the probability p that it comes up heads. Toss a coin
5 times. Let X : the number of heads in 5 tosses. What is the range of X
(i.e., what are the values that X can take on with non-zero probability)?
What is P [X = k ] where k is in the range of X?

Answer

Notice that each coin toss is an independent trial.

Recall P [2 heads ] = (5
2
)p2(1 − p)3, P [3 heads ] = (5

3
)p3(1 − p)2.

Range of X ∶ {0,1,2,3,4,5}
P [X = k ] = (5

k
)pk(1 − p)5−k

Example
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Probability mass function definition (PMF)

A random variable X is discrete if its range has countably many values

X = x where x ∈ {x1, x2, x3, . . .}

Discrete random variable

The probability mass function (PMF) of a discrete random variable X is a
function p(a) of X that maps possible outcomes of a random variable to
the corresponding probabilities:

p(a) = P [X = a ] = pX (a)

Probability mass function

Recall that probabilities must sum to 1:
∞

∑
i=1

p(ai) = 1.
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Example for a single die

Let X be a RV representing a single die roll.
Range of X ∶ {1,2,3,4,5,6}, thus X is a discrete RV.
PMF of X :

p(x) = P [X = x ] = {
1
6

x ∈ {1,2,3,4,5,6}
0 otherwise

X = x

P
[X

=
x]

1 2 3 4 5 6

1
6

0
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Example for two dice

Let Y be a RV representing the sum of two independent dice rolls.
Range of Y ∶ {2,3, . . . ,11,12}.
PMF of Y :

p(y) = P [Y = y ] =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

y−1
36

y ∈ Z,2 ≤ y ≤ 6
13−y

36
y ∈ Z,7 ≤ y ≤ 12

0 otherwise

Check ∑12
y=2 p(y) = 1.

Y = y

P
[Y

=
y]

2 3 4 5 6 7 8 9 10 11 12

1
36

0

2
36

0

3
36

0

4
36

0

5
36

0

6
36

0
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Properties of PMF

Let possible values of X = {a1,a2,a3, . . .}.

1. By Axiom 1: 0 ≤ p(ai) ≤ 1.

2. p(a) = 0 if a is not a possible value.

3. By Axiom 3:
∞

∑
i=1

p(ai) = 1.

∞

∑
i=1

p(ai) =
∞

∑
i=1

P [X = ai ] = P [
∞

⋃
i=1

{X = ai} ] = P [S ] = 1

4. Notice that everything to do with discrete RVs is expressed in terms of
(finite or infinite) sum.

5. For continuous RVs, these sums are replaced by integrals.
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Cumulative distribution function definition (CDF)

Another useful way to analyse probabilities.

The cumulative distribution function (CDF) of a random variable X is
defined as

F(a) = FX (a) = P [X ≤ a ] where −∞ < a < ∞

For a discrete random variable X , the CDF is

F(a) = P [X ≤ a ] = ∑
all x≤a

p(x)

Cumulative distribution function

Note that for a discrete RV the CDF is a step function, i.e., the value of F is
constant in the intervals (xi−1, xi) and then takes a step of size p(xi) at xi .
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Example

Let the PMF for X be given by p(1) = 1
4
,p(2) = 1

2
,p(3) = 1

8
,p(4) = 1

8
.

Then CDF is:

F(a) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 a < 1
1
4

1 ≤ a < 2
3
4

2 ≤ a < 3
7
8

3 ≤ a < 4
1 4 ≤ a

Graphical depiction of function:

1 2 3 4

1
4

3
4

7
8

1

0

1

a

F
(a
)
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Example for a single die

PMF of X

X = x

P
[X

=
x]

1 2 3 4 5 6

1
6

0

CDF of X

1 2 3 4 5 6

1/6

2/6

3/6

4/6

5/6

0

1

X = x

F
(a
)

P [X ≤ 6] = 1

P [X ≤ 0] = 0

Intro to Probability Cumulative distribution function 15



Properties of CDF

1. 0 ≤ F(x) ≤ 1 for all x

2. lim
x→−∞

F(x) = 0

3. lim
x→∞

F(x) = 1

4. F(x) is a non-decreasing function of x (if x1 < x2 then F(x1) ≤ F(x2))
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Expectation - expected value

The expectation of a discrete random variable X is defined as

E [X ] = ∑
x∶P[ x ]>0

xP [ x ]

Expectation

Expectation is the average value of the random variable over many
repetitions of the experiment it represents.

It is the sum over all values of X = x that have non-zero probability.

AKA: mean, expected value, weighted average, centre of mass, first
moment.
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Example of a die roll

What is the expected value of a 6-sided die roll (i.e., what is the average
value of a die roll)?

1. Define random variables:

X = RV for value of roll

P [X = x ] = {
1
6

x ∈ {1, . . . ,6}
0 otherwise

2. Solve:

E [X ] = 1(1
6
) + 2(1

6
) + 3(1

6
) + 4(1

6
) + 5(1

6
) + 6(1

6
) = 7

2
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Example of school classes

A school has 3 classes with 5, 10 and 150 students. What is the
average class size?

Answer

Interpretation 1: Randomly choose a class with equal probability. Thus,
X = size of chosen class

E [X ] = 5(1
3
) + 10(1

3
) + 150(1

3
) = 165

3
= 55

Interpretation 2: Randomly choose a student with equal probability.
Thus, Y = size of chosen class

E [Y ] = 5( 5
165

)+10( 10
165

)+150(150
165

) = 22635
165

= 137

Example

This is a general phenomenon: it occurs because the more students are in a
class, the more likely it is that a randomly chosen student would be in that
class. As a result, bigger classes are given more weight than smaller classes.
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Example of Roulette Version 1

A roulette wheel has 36 places numbered from 1 to 36. In addition, 18 of them
are coloured red and the other 18 are coloured black. A ball is thrown to take one
of 36 places. A gambler can bet:

on the colour of the place that the ball takes. A correct, either red or black,
place wins them a 1 to 1 ratio payout;

on the number of the place that the ball takes. A correct number wins them a
35 to 1 ratio payout.

What is the expected value if a gambler bets on
1. the colour of the place in the roulette;

2. the number of the place in the roulette that the ball will fall.
Are the two different betting games fair?

Answer

Example
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Example of Roulette Version 1 Cont.

What is the expected value if a gambler bets on
1. the colour of the place in the roulette;

2. the number of the place in the roulette that the ball will fall.
Are the two different betting games fair?

Answer

1. Let EX ∶ bet on colour.

If loose, then X = −1. Thus P [ looseX ] = 1
2 .

If win, then X = 1. Thus P [winX ] = 1
2 .

Thus, E [X ] = (−1)( 1
2 ) + (1)( 1

2 ) = 0, This game is "fair".

2. Let EY ∶ bet on number.

If loose, then Y = −1. Thus P [ looseY ] = 35
36 .

If win, then Y = 35. Thus P [winY ] = 1
36 .

Thus, E [Y ] = (−1)( 35
36 ) + (35)( 1

36 ) = 0, This game is "fair" too.

Example
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Example of Roulette Version 2

Change the game to add two green places, 0 and 00. Now there are a
total of 38 places. Payouts are the same as before. What are the
expected values now?

Answer

1. Let EX ∶ bet on red colour.

Thus, E [X ] = (−1)( 20
38
) + (1)( 18

38
) = − 1

19
.

2. Let EY ∶ bet on number 10.

Thus, E [Y ] = (−1)( 37
38
) + (35)( 1

38
) = − 1

19
.

So, no, these games are not fair, as the gambler would loose
£ 1

19
= 5.3 pence per game.

Example
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