Introduction to Probability

Lecture 1: Conditional probabilities and Bayes' theorem Mateja Jamnik, Thomas Sauerwald

University of Cambridge, Department of Computer Science and Technology email: {mateja.jamnik,thomas.sauerwald}@cl.cam.ac.uk

Logistics, motivation, background

Conditional probability

Bayes' Theorem

Independence

Lecturers

Mateja Jamnik

Thomas Sauerwald

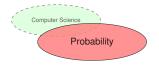
Rough syllabus:

- Introduction to probability: 1 lecture
- Discrete and continuous random variables: 6 lectures
- Moments and limit theorems: 3 lectures
- Applications/statistics: 2 lectures

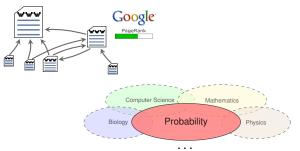
Recommended reading:

- Ross, S.M. (2014). A First course in probability. Pearson (9th ed.).
- Dekking, F.M., et. al. (2005) A modern introduction to probability and statistics. Springer.
- Bertsekas, D.P. & Tsitsiklis, J.N. (2008). Introduction to probability. Athena Scientific.
- Grimmett, G. & Welsh, D. (2014). Probability: an Introduction. Oxford University Press (2nd ed.).

- Gives us mathematical tools to deal with uncertain events.
- It is used everywhere, especially in applications of machine learning.
- Machine learning: use probability to compute predictions about and from data.
- Probability is not statistics:
 - Both about random processes.
 - Probability: logically self-contained, few rules for computing, one correct answer.
 - Statistics: messier, more art, get experimental data and try to draw probabilistic conclusions, no single correct answer.



Ranking Websites

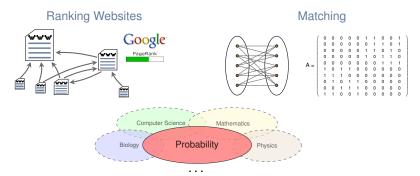


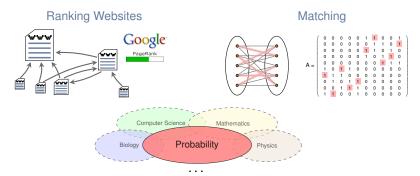
Ranking Websites



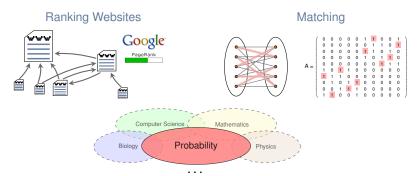
Ranking Websites



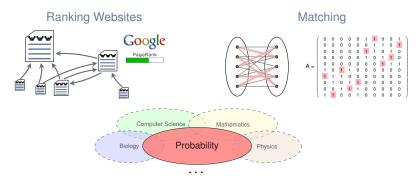




Data Mining

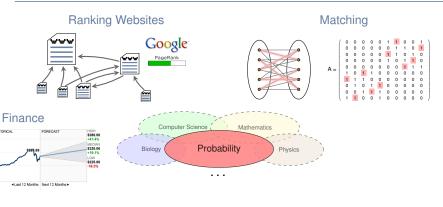


Intro to Probability



Data Mining Deep Learning Particle Processes

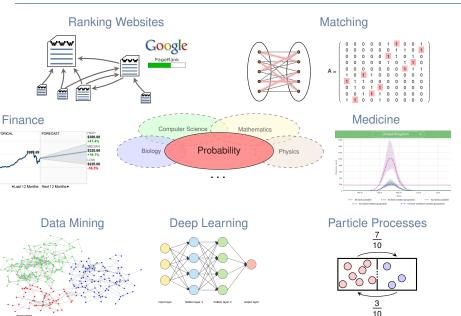
Intro to Probability



HISTORICAL

\$400

Intro to Probability



HISTORICAL

\$400

Intro to Probability

- Set theory
- Counting: product rule, sum rule, inclusion-exclusion
- Combinatorics: permutations
- Probability space: sample space, event space
- Axioms
- Union bound

Look for revision material of above on the course website:

https://www.cl.cam.ac.uk/teaching/2425/IntroProb/

Logistics, motivation, background

Conditional probability

Bayes' Theorem

Independence

Conditional probability -

Consider an experiment with sample space *S*, and two events *E* and *F*. Then, the (conditional) probability of event *E* given *F* has occurred (denoted $\mathbf{P}[E|F]$) with $\mathbf{P}[F] > 0$ is defined by

$$\mathbf{P}[E|F] = \frac{\mathbf{P}[E \cap F]}{\mathbf{P}[F]} = \frac{\mathbf{P}[EF]}{\mathbf{P}[F]}$$

Conditional probability Consider an experiment with sample space *S*, and two events *E* and *F*. Then, the (conditional) probability of event *E* given *F* has occurred (denoted $\mathbf{P}[E|F]$) with $\mathbf{P}[F] > 0$ is defined by $\mathbf{P}[E|F] = \frac{\mathbf{P}[E \cap F]}{\mathbf{P}[F]} = \frac{\mathbf{P}[EF]}{\mathbf{P}[F]}$

Sample space: all possible outcomes consistent with F (i.e., $S \cap F = F$)

Conditional probability -

Consider an experiment with sample space *S*, and two events *E* and *F*. Then, the (conditional) probability of event *E* given *F* has occurred (denoted $\mathbf{P}[E|F]$) with $\mathbf{P}[F] > 0$ is defined by

$$\mathbf{P}[E|F] = \frac{\mathbf{P}[E \cap F]}{\mathbf{P}[F]} = \frac{\mathbf{P}[EF]}{\mathbf{P}[F]}$$

Sample space: all possible outcomes consistent with *F* (i.e., $S \cap F = F$) Event space: all outcomes in *E* consistent with *F* (i.e., $E \cap F$)

Conditional probability

Consider an experiment with sample space *S*, and two events *E* and *F*. Then, the (conditional) probability of event *E* given *F* has occurred (denoted $\mathbf{P}[E|F]$) with $\mathbf{P}[F] > 0$ is defined by

$$\mathbf{P}[E|F] = \frac{\mathbf{P}[E \cap F]}{\mathbf{P}[F]} = \frac{\mathbf{P}[EF]}{\mathbf{P}[F]}$$

Sample space: all possible outcomes consistent with *F* (i.e., $S \cap F = F$) Event space: all outcomes in *E* consistent with *F* (i.e., $E \cap F$) Note: we assume that all outcomes are equally likely

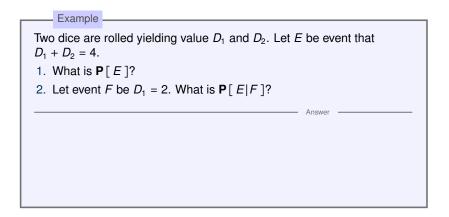
Conditional probability

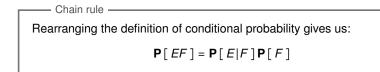
Consider an experiment with sample space *S*, and two events *E* and *F*. Then, the (conditional) probability of event *E* given *F* has occurred (denoted $\mathbf{P}[E|F]$) with $\mathbf{P}[F] > 0$ is defined by

$$\mathbf{P}[E|F] = \frac{\mathbf{P}[E \cap F]}{\mathbf{P}[F]} = \frac{\mathbf{P}[EF]}{\mathbf{P}[F]}$$

Sample space: all possible outcomes consistent with *F* (i.e., $S \cap F = F$) Event space: all outcomes in *E* consistent with *F* (i.e., $E \cap F$) Note: we assume that all outcomes are equally likely

$$\mathbf{P}[E|F] = \frac{\# \text{ outcomes in } E \cap F}{\# \text{ outcomes in } F} = \frac{\frac{\# \text{ outcomes in } E \cap F}{\# \text{ outcomes in } S}}{\frac{\# \text{ outcomes in } F}{\# \text{ outcomes in } S}} = \frac{\mathbf{P}[E \cap F]}{\mathbf{P}[F]}$$





Chain rule — Chain rule — Rearranging the definition of conditional probability gives us: $\mathbf{P}[EF] = \mathbf{P}[E|F]\mathbf{P}[F]$

Generalisation of the Chain rule:

Multiplication rule _____

 $\mathbf{P}[E_1 E_2 \cdots E_n] = \mathbf{P}[E_1] \mathbf{P}[E_2 | E_1] \mathbf{P}[E_3 | E_2 E_1] \cdots \mathbf{P}[E_n | E_1 \cdots E_{n-1}]$

Example

An ordinary deck of 52 playing cards is randomly divided into 4 piles of 13 cards each. What is the probability that each pile has exactly 1 ace?

Answei

Example

An ordinary deck of 52 playing cards is randomly divided into 4 piles of 13 cards each. What is the probability that each pile has exactly 1 ace?

Define:

 $E_1 = ace \Psi$ is in any one pile

 $E_2 = ace \Psi$ and $ace \Phi$ are in different piles

 $E_3 = ace \Psi$, $ace \Phi$ and $ace \Phi$ are in different piles

 E_4 = all aces are in different piles

Example

An ordinary deck of 52 playing cards is randomly divided into 4 piles of 13 cards each. What is the probability that each pile has exactly 1 ace?

Define:

 $E_1 = ace \Psi$ is in any one pile

 $E_2 = ace \Psi$ and $ace \Phi$ are in different piles

 $E_3 = ace \Psi$, $ace \Phi$ and $ace \Phi$ are in different piles

 E_4 = all aces are in different piles

 $\mathbf{P}[E_{1}E_{2}E_{3}E_{4}] = \mathbf{P}[E_{1}]\mathbf{P}[E_{2}|E_{1}]\mathbf{P}[E_{3}|E_{1}E_{2}]\mathbf{P}[E_{4}|E_{1}E_{2}E_{3}]$

Example

An ordinary deck of 52 playing cards is randomly divided into 4 piles of 13 cards each. What is the probability that each pile has exactly 1 ace?

Define:

 $E_1 = ace \Psi$ is in any one pile

 $E_2 = ace \Psi$ and $ace \Phi$ are in different piles

 $E_3 = ace \Psi$, $ace \Phi$ and $ace \Phi$ are in different piles

 E_4 = all aces are in different piles

 $\mathbf{P}[E_1 E_2 E_3 E_4] = \mathbf{P}[E_1] \mathbf{P}[E_2 | E_1] \mathbf{P}[E_3 | E_1 E_2] \mathbf{P}[E_4 | E_1 E_2 E_3]$

We have $P[E_1] = 1$. For rest we consider complement of next ace being in the same pile and thus have:

Logistics, motivation, background

Conditional probability

Bayes' Theorem

Independence

The law of total probability (a.k.a. Partition theorem) For events *E* and *F* where $\mathbf{P}[F] > 0$, then for any event *E* $\mathbf{P}[E] = \mathbf{P}[EF] + \mathbf{P}[EF^{c}] = \mathbf{P}[E|F]\mathbf{P}[F] + \mathbf{P}[E|F^{c}]\mathbf{P}[F^{c}]$ In general, for disjoint events F_1, F_2, \dots, F_n s.t. $F_1 \cup F_2 \cup \dots \cup F_n = S$, $\mathbf{P}[E] = \sum_{i=1}^{n} \mathbf{P}[E|F_i]\mathbf{P}[F_i]$

Intuition:

Want to know probability of *E*. There are two scenarios, *F* and F^c . If we know these and the probability of *E* conditioned on each scenario, we can compute the probability of *E*.

Example

There are 3 boxes each containing a different number of light bulbs. The first box has 10 bulbs of which 4 are dead, the second has 6 bulbs of which 1 is dead, and the third box has 8 bulbs of which 3 are dead. What is the probability of a dead bulb being selected when a bulb is chosen at random from one of the 3 boxes (each box has equal chance of being picked)?

Answe

Example

There are 3 boxes each containing a different number of light bulbs. The first box has 10 bulbs of which 4 are dead, the second has 6 bulbs of which 1 is dead, and the third box has 8 bulbs of which 3 are dead. What is the probability of a dead bulb being selected when a bulb is chosen at random from one of the 3 boxes (each box has equal chance of being picked)?

Let event E = "dead bulb is picked", and F_1 = "bulb is picked from first box", F_2 = "bulb is picked from second box" and F_3 = "bulb is picked from third box". We know:

Example

There are 3 boxes each containing a different number of light bulbs. The first box has 10 bulbs of which 4 are dead, the second has 6 bulbs of which 1 is dead, and the third box has 8 bulbs of which 3 are dead. What is the probability of a dead bulb being selected when a bulb is chosen at random from one of the 3 boxes (each box has equal chance of being picked)?

Let event E = "dead bulb is picked", and F_1 = "bulb is picked from first box", F_2 = "bulb is picked from second box" and F_3 = "bulb is picked from third box". We know:

$$\mathbf{P}[E|F_1] = \frac{4}{10}, \mathbf{P}[E|F_2] = \frac{1}{6}, \mathbf{P}[E|F_3] = \frac{3}{8}$$

Example

There are 3 boxes each containing a different number of light bulbs. The first box has 10 bulbs of which 4 are dead, the second has 6 bulbs of which 1 is dead, and the third box has 8 bulbs of which 3 are dead. What is the probability of a dead bulb being selected when a bulb is chosen at random from one of the 3 boxes (each box has equal chance of being picked)?

Let event E = "dead bulb is picked", and F_1 = "bulb is picked from first box", F_2 = "bulb is picked from second box" and F_3 = "bulb is picked from third box". We know:

$$\mathbf{P}[E|F_1] = \frac{4}{10}, \mathbf{P}[E|F_2] = \frac{1}{6}, \mathbf{P}[E|F_3] = \frac{3}{8}$$

We need to compute **P** [*E*], and we know that **P** [*F_i*] = $\frac{1}{3}$:

Bayes' theorem

How many spam emails contain the word "Dear"?

P[*E*|*F*] = **P**["Dear"|spam]

But how about what is the probability that an email containing "Dear" is spam?

 $\mathbf{P}[F|E] = \mathbf{P}[\text{spam}|\text{"Dear"}]$

How many spam emails contain the word "Dear"?

P[*E*|*F*] = **P**["Dear"|spam]

But how about what is the probability that an email containing "Dear" is spam?

 $\mathbf{P}[F|E] = \mathbf{P}[\text{spam}|\text{"Dear"}]$

Bayes' theorem

```
For any events E and F where \mathbf{P}[E] > 0 and \mathbf{P}[F] > 0,
```

$$\mathbf{P}[F|E] = \frac{\mathbf{P}[E|F]\mathbf{P}[F]}{\mathbf{P}[E]}$$

and in expanded form,

 $\mathbf{P}[F|E] = \frac{\mathbf{P}[E|F]\mathbf{P}[F]}{\mathbf{P}[E|F]\mathbf{P}[F] + \mathbf{P}[E|F^c]\mathbf{P}[F^c]} = \frac{\mathbf{P}[E|F]\mathbf{P}[F]}{\sum_{i=1}^{n} \mathbf{P}[E|F_i]\mathbf{P}[F_i]}$

using the Law of Total Probability. Note that all events F_i must be mutually exclusive (non-overlapping) and exhaustive (their union is the complete sample space).

Example

Example

60% of all email in 2022 is spam. 20% of spam contains the word "Dear". 1% of non-spam contains the word "Dear". What is the probability that an email is spam given it contains the word "Dear"?

 Answer

Example

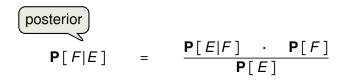
Example

60% of all email in 2022 is spam. 20% of spam contains the word "Dear". 1% of non-spam contains the word "Dear". What is the probability that an email is spam given it contains the word "Dear"?

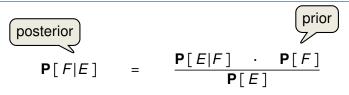
Answer

Let event E = "Dear", event F = spam.

F: hypothesis, E: evidence



F: hypothesis, E: evidence

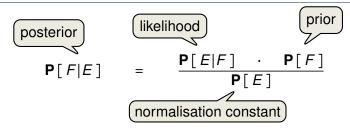


F: hypothesis, *E*: evidence **P**[*F*]: "prior probability" of hypothesis

Bayes' terminology

F: hypothesis, E: evidence P[F]: "prior probability" of hypothesis P[E|F]: probability of evidence given hypothesis (likelihood)

Bayes' terminology



F: hypothesis, *E*: evidence $\mathbf{P}[F]$: "prior probability" of hypothesis $\mathbf{P}[E|F]$: probability of evidence given hypothesis (likelihood) $\mathbf{P}[E]$: calculated by making sure that probabilities of all outcomes sum to 1 (they are "normalised")

Used in classification tasks for predicting output error.

		True condition	
	Total population	Condition positive	Condition negative <i>F^c</i>
Predicted condition	Predicted condition pos- itive <i>E</i>	True positive P [<i>E</i> <i>F</i>]	False positive $P[E F^c]$
Prec	Predicted condition neg- ative <i>E^c</i>	False negative $\mathbf{P}[E^c F]$	True negative P [<i>E^c</i> <i>F^c</i>]

Medical testing example

Example

- A test is 98% effective at detecting the disease COVID-19 ("true positive").
- The test has a "false positive" rate of 1%.
- 0.5% of the population has COVID-19.
- What is the likelihood you have COVID-19 if you test positive?

Answer

Medical testing example

Example

- A test is 98% effective at detecting the disease COVID-19 ("true positive").
- The test has a "false positive" rate of 1%.
- 0.5% of the population has COVID-19.
- What is the likelihood you have COVID-19 if you test positive?
- Let E: test positive, F: actually have COVID-19.
- Need to find P [F | E].

• 33% chance of having COVID-19 after testing positive may seem surprising.

- 33% chance of having COVID-19 after testing positive may seem surprising.
- But the space of facts is now conditioned on a positive test result (people who test positive and have COVID-19 and people who test positive and don't have COVID-19).

- 33% chance of having COVID-19 after testing positive may seem surprising.
- But the space of facts is now conditioned on a positive test result (people who test positive and have COVID-19 and people who test positive and don't have COVID-19).

	F yes disease	F ^c no disease
E test+	True positive	False positive
	P [<i>E</i> <i>F</i>] = 0.98	$\mathbf{P}[E F^{c}] = 0.01$
E ^c test-	False negative	True negative
	$\mathbf{P}\left[E^{c} F\right] = 0.02$	$\mathbf{P}\left[E^{c} F^{c}\right] = 0.99$

- 33% chance of having COVID-19 after testing positive may seem surprising.
- But the space of facts is now conditioned on a positive test result (people who test positive and have COVID-19 and people who test positive and don't have COVID-19).

	F yes disease	F ^c no disease
E test+	True positive	False positive
	P [<i>E</i> <i>F</i>] = 0.98	$\mathbf{P}[E F^{\dot{c}}] = 0.01$
E ^c test-	False negative	True negative
	$\mathbf{P}\left[E^{c} F\right] = 0.02$	$\mathbf{P}\left[E^{c} F^{c}\right] = 0.99$

But what is a chance of having COVID-19 if you test and it comes back negative?

- 33% chance of having COVID-19 after testing positive may seem surprising.
- But the space of facts is now conditioned on a positive test result (people who test positive and have COVID-19 and people who test positive and don't have COVID-19).

	F yes disease	F ^c no disease
E test+	True positive	False positive
	P [<i>E</i> <i>F</i>] = 0.98	$\mathbf{P}[E F^{\dot{c}}] = 0.01$
E ^c test-	False negative	True negative
	$\mathbf{P}\left[E^{c} F\right] = 0.02$	$\mathbf{P}\left[E^{c} F^{c}\right] = 0.99$

But what is a chance of having COVID-19 if you test and it comes back negative?

$$\mathbf{P}[F|E^{c}] = \frac{\mathbf{P}[E^{c}|F]\mathbf{P}[F]}{\mathbf{P}[E^{c}|F]\mathbf{P}[F] + \mathbf{P}[E^{c}|F^{c}]\mathbf{P}[F^{c}]} \approx 0.0001$$

- 33% chance of having COVID-19 after testing positive may seem surprising.
- But the space of facts is now conditioned on a positive test result (people who test positive and have COVID-19 and people who test positive and don't have COVID-19).

	F yes disease	F ^c no disease
E test+	True positive	False positive
	P [<i>E</i> <i>F</i>] = 0.98	$P[E F^{c}] = 0.01$
E ^c test-	False negative	True negative
	$\mathbf{P}\left[E^{c} F\right] = 0.02$	$\mathbf{P}\left[E^{c} F^{c}\right] = 0.99$

But what is a chance of having COVID-19 if you test and it comes back negative?

$$\mathbf{P}[F|E^{c}] = \frac{\mathbf{P}[E^{c}|F]\mathbf{P}[F]}{\mathbf{P}[E^{c}|F]\mathbf{P}[F] + \mathbf{P}[E^{c}|F^{c}]\mathbf{P}[F^{c}]} \approx 0.0001$$

- We update our beliefs with Bayes' theorem: I have 0.5% chance of having COVID-19. I take the test:
 - Test is positive: I now have 33% chance of having COVID-19.
 - Test is negative: I now have 0.01% chance of having COVID-19.
- So it makes sense to take the test.

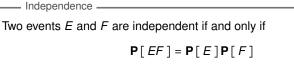
Logistics, motivation, background

Conditional probability

Bayes' Theorem

Independence

Independent events

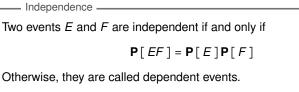


Otherwise, they are called dependent events.

In general, *n* events $E_1, E_2, ..., E_n$ are mutually independent if for every subset of these events with *r* elements (where $r \le n$) it holds that

 $\mathbf{P}[E_a E_b \cdots E_r] = \mathbf{P}[E_a] \mathbf{P}[E_b] \cdots \mathbf{P}[E_r]$

Independent events



In general, *n* events $E_1, E_2, ..., E_n$ are mutually independent if for every subset of these events with *r* elements (where $r \le n$) it holds that

 $\mathbf{P}[E_a E_b \cdots E_r] = \mathbf{P}[E_a] \mathbf{P}[E_b] \cdots \mathbf{P}[E_r]$

Therefore for 3 events E, F, G to be independent, we must have

Independence of complement

Notice an equivalent definition for independent events *E* and *F* (P[F] > 0)

 $\mathbf{P}[E|F] = \mathbf{P}[E]$

Proof:

Independence of complement

Notice an equivalent definition for independent events *E* and *F* (P[F] > 0)

 $\mathbf{P}[E|F] = \mathbf{P}[E]$

Proof:

— Independence of complement —

If events *E* and *F* are independent, then *E* and F^c are independent:

$$\mathbf{P}\left[EF^{c} \right] = \mathbf{P}\left[E \right] \mathbf{P}\left[F^{c} \right]$$

Proof:

Independence of complement

Notice an equivalent definition for independent events *E* and *F* (P[F] > 0)

 $\mathbf{P}[E|F] = \mathbf{P}[E]$

Proof:

— Independence of complement —

If events *E* and *F* are independent, then *E* and F^c are independent:

$$\mathbf{P}\left[EF^{c} \right] = \mathbf{P}\left[E \right] \mathbf{P}\left[F^{c} \right]$$

Proof:

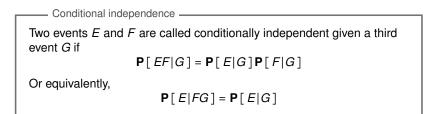
Example

Example

Each roll of a die is an independent trial. We have two rolls of D_1 and D_2 . Let event $E: D_1 = 1, F: D_2 = 6$ and event $G: D_1 + D_2 = 7$ (thus $G = \{(1,6), (2,5), (3,4), (4,3), (5,2), (6,1)\}$).

- 1. Are E and F independent?
- 2. Are E and G independent?
- 3. Are E, F, G independent?

Answe




```
Conditional independence

Two events E and F are called conditionally independent given a third

event G if

\mathbf{P}[EF|G] = \mathbf{P}[E|G]\mathbf{P}[F|G]

Or equivalently,

\mathbf{P}[E|FG] = \mathbf{P}[E|G]
```

Notice that:

- Dependent events can become conditionally independent.
- Independent events can become conditionally dependent.
- Knowing when conditioning breaks or creates independence is a big part of building complex probabilistic models.

Example

Each roll of a die is an independent trial. We have two rolls of D_1 and D_2 . Let event $E : D_1 = 1, F : D_2 = 6$ and event $G : D_1 + D_2 = 7$ (thus $G = \{(1,6), (2,5), (3,4), (4,3), (5,2), (6,1)\}$).

- 1. Are E and F independent?
- 2. Are E and F independent given G?

Conditioning on event G:

Name of rule	Original rule	Conditional rule
1st axiom of probability	$0 \leq \mathbf{P} [E] \leq 1$	$0 \leq \mathbf{P}[E G] \leq 1$
Complement	$\mathbf{P}[E] = 1 - \mathbf{P}[E^{c}]$	$\mathbf{P}[E G] = 1 - \mathbf{P}[E^{c} G]$
Chain rule	P [<i>EF</i>] = P [<i>E</i> <i>F</i>] P [<i>F</i>]	$\mathbf{P}[EF G] = \mathbf{P}[E FG]\mathbf{P}[F G]$
Bayes' theorem	$\mathbf{P}[F E] = \frac{\mathbf{P}[E F]\mathbf{P}[F]}{\mathbf{P}[E]}$	$\mathbf{P}[F EG] = \frac{\mathbf{P}[E FG]\mathbf{P}[F G]}{\mathbf{P}[E G]}$

