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Lecture 1 (Introduction to Probability)

1. We have a hash table that has 100 buckets. We add to the table two arbitrary strings that
are independently hashed. How many possible ways are there for the strings to be stored in
the table?

2. A license plate has 6 places, where the first three are upper case letters A-Z, and the last
three places are numeric 0-9. How many such 6-place license plates are possible?

3. Consider a hash table with 100 buckets. 950 strings are hashed and added to the table. a)
Is it possible that a bucket in the table contains no entries? b) Is it guaranteed that at least
one bucket in the table contains at least two entries? c) Is it guaranteed that at least one
bucket in the table contains at least 10 entries? d) Is it guaranteed that at least one bucket
in the table contains at least 11 entries?

4. How many ways are there to select 3 books from a set of 6?

5. Old iPhone passcodes were 4-digit. If we can see a fingerprint on the screen of 3 digits (so
1 digit must use used twice), how many distinct passcodes are possible? What is there were
only fingerprints only on 2 digits?

6. How many distinct bit strings can be formed from three 0’s and two 1’s?

7. A company X has 13 new servers that they would like to assign to 3 datacentres, where
datacentre A, B and C have 6, 4 and 3 empty server racks, respectively. How many different
divisions of the serves are possible?

8. An urn contains 8 red balls and 4 white balls. We draw 2 balls from the urn without replace-
ment.
a) Assume each draw is equally likely. What is the probability that both balls drawn are red?
b) Assume red balls have weight r and white balls have weight w, and the probability that a
given ball is the next one selected from the urn is its weight divided by the sum of weights of
all balls currently in the urn. What is the probability now that both balls drawn are red?

9. There are only two factories that produce light bulbs. The light bulbs produced in factory A
work for over 5000 hours in 99% of cases, whereas the ones from the other factory B work
for over 5000 hours in only 95% of the cases. Factory A supplies 60% of the market, whereas
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factory B supplies the remaining 40% of the market. What is the chance that a purchased
light bulb will work for longer than 5000 hours?

10. Monty Hall Problem
You are in a game show where there are 3 closed doors in front of you. There is a prize behind
one of the doors, all equally likely. You point to one of the doors. The game show host opens
either of the other two doors and shows that it does not have a prize. You now get a choice:
do you stick with your original door and open it, or should you switch to the other non-open
door?

• You may think you now have 50/50 chance since one door has and one doesn’t have the
prize behind it. But you would be wrong: let’s use Bayes’ rule to calculate.

• Let F1: prize behind door 1, F2: prize behind door 2, F3: prize behind door 3, so
P [Fi ] = 1

3 .

• Without loss of generality, say you pick door 1, and the host opens door 2 without the
prize behind it (E: open door 2 without a prize).

• So we want to compare:

– if we should stick to our choice of door 1: compute probability of a prize being
behind door 1 given that door 2 was opened without a prize: P [F1|E ].

– if we should switch to door 3: compute probability of a prize being behind door 3
given that door 2 was opened without a prize: P [F3|E ].

Given Bayes’ rule we have P [F1|E ] = P[E|F1 ]P[F1 ]
P[E ] .

Compute the probability that the host opens door 2 (when we picked door 1).

Lectures 2, 3 (Random variables, probability mass function,
expectation, expectation properties, variance, discrete distributions)

1. You are playing a card game that uses four standard decks of cards. There are 208 card in
total. Each deck has 52 cards (13 values with 4 suits each). Cards are only distinguishable
based in their suit and value, not which deck they came from.
a) In how many distinct ways can the cards be ordered?
b) You will be dealt the first two cards from the four decks of cards. Cards with values 10,
Jack, Queen, King and Ace are considered “good” cards. What is the probability of getting
two “good” cards?
c) Over the course of several rounds you observe 100 cards played. Out of the cards played
only 15 were “good” cards. You are dealt the next two cards. What is the probability of
getting two “good” cards now? You may assume that previously seen cards are not re-dealt.

2. n people go to a party and drop off their hats to a hat-check person. When the party is over,
a different hat-check person is on duty, and returns the n hats randomly back to each person.
Let X be the random variable representing the number of people who get their own hat back.
a) For n = 3, find E[X] by first computing the probability mass function pX , and then
applying the definition of expectation.
b) Find a general formula for E[X], for any positive integer n.

3. Four 6-sided dice are rolled. The dice are fair, so each one has equal probability of producing
a value in {1, 2, 3, 4, 5, 6}. Let X = the minimum of the four values rolled. (It is fine if more
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than one of the dice has the minimal value.)
a) What is P [X > k] as a function of k?
b) What is E[X]?
c) Let T be the sum of the values rolled on the four dice. Let S be the sum of the largest
three values on the four dice. In other words, S = T −X. What is E[S]?

4. The lottery works like this: 100 balls numbered 0-99 are placed in an urn, and 5 balls are
withdrawn, giving an ordered sequence of 5 numbers. Once balls are drawn they are not
replaced before the next are drawn. Citizens buy tickets with 5 numbers of their choosing.
The jackpot is awarded for matching all 5 numbers in the right order.
a) When drawing a lottery, how many possible outcomes are there?
b) You decide to play 5 different numbers. You buy several tickets, one for each of permu-
tations of these 5 numbers. How many tickets do you need to buy? What is your chance of
winning the jackpot?
c) You can also win a prize if you guess all 5 numbers, but in incorrect order. What is the
probability that any ticket could win this prize? What is your probability of winning this
prize?

5. A four sided die has sides numbered 1− 4. You roll two such dice. Let X be the sum of the
two dice.
a) What are the possible values of X?
b) What is the probability mass function of X?
c) What is the expectation of X, E[X]?

6. Let X be a randon variable with possible values of 0 and 1. Let P [X = 0] = 2 ·P [X = 1] and
E[X] = 1

3 .
a) What is the probability mass function of X?
b) What is the variance of of X, V [X]?

Lecture 4 (More discrete distributions: Poisson, Geometric, Negative)

1. Cambridge Tigers Korfball (CTK) team has a probability 0.7 to win in a home game, and
probability 0.5 to win in an away game. All games are independent. In a season, there are
35 home and 35 away games.
a) What is the probability that CTK win exactly 20 home games?
b) What is the probability that the first home win for CTK is on the fourth home game?
c) CTK plays in a 3-game series in a pattern home-away-home. What is the probability that
CTK wins two out of these three games?
d) A new korfball team joins the league and only has probability of 0.05 of winning each game
regardless of whether it is home or away. What is the approximation of the probability that
this new team wins w season games?

2. A take-away has a footfall of 10 customers per hour. Let us model with by a Poisson process.
a) What is the probability that at least 3 customers come to a take-away over the course of
an hour?
b) For how many hours must the take-away be open for the expected number of customers
visiting in that time period to be 100? What is the probability that 0 customer come to the
take-away during that time period?
c) Suppose that starting at any particular moment in time, the amount of time we must
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wait for the next customer to come is a continuous random variable with probability density
function f(x) where x is measured in hours:

f(x) =

{
10e−10x if x > 0,

0 if x < 0.

What is the probability that we must wait more than 6 minutes (which is 0.1 hours) for the
next customer to come to take-away?

3. Consider requests to a web server in 1 second. In the past, server load averages at 2
hits/second. What is the probability of getting less than 5 hits in a second?

4. There are 10 balls in an urn. One is white, 9 are black. Balls are drawn, then replaced. What
is the probability that n or more tries are needed to get the white ball?

Lecture 5 (Continuous random variables)

1. Let us toss a fair coin 100 times. Let X be the number of heads. What is the probability
that 43 6 X 6 57? Using continuity correction, approximate the binomial distribution by
normal distribution.

2. Two types of cars, A and B, are being tested for fuel consumption. On test, there are 10 cars
of type A and 10 cars of type B, and the consumption of fuel by all 20 vehicles is independent.
Let Ax be the number of litres of fuel by car x of type A consumed in the test drive. Let
By be the number of litres of fuel by car y of type B consumed in the same test drive. Let
Ax ∼ Pois(4) for 1 6 x 6 10 and By ∼ N(5, 3) for 1 6 y 6 10. For every test drive we pick
(probabilistically) cars that we will monitor for the amount of fuel consumed and generate
the statistics for them. For every test drive a car has (independently) a 0.2 probability of
being monitored. Let T be the total amount of fuel (in litres) consumed by the monitored
cars.
a) Compute E[T ].
b) On a particular test drive, let there be 3 type A cars being monitored (no type B). What
is P [T > 20] on that test drive?
c) Now, on another test drive, let there be 3 type B cars being monitored (no type A). What
is P [T > 20] on that test drive?

Lecture 6,7 (Joint and Marginal Distributions)

1. Let X and Y be a pair of random variables with joint distribution function FX,Y = F . Prove
that for any a, b, c, d ∈ R such that a < b and c < d,

P [ a 6 X 6 b, c 6 Y 6 d ] = F (b, d) + F (a, c)− F (a, d)− F (b, c).

2. Let X and Y be two random variables with joint distribution function

FX,Y (x, y) =

{
1− e−x − e−y + e−x−y if x, y > 0,

0 otherwise.
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Compute the marginal distribution function of X and Y , FX(x) and FY (y), and their density.
What can you conclude about the random variables X and Y ?

3. Related to the example about an urn containing balls numbered 1, 2, . . . , N (Slide 7), consider
instead the process of drawing n 6 N balls without replacement from an urn that contains m
red balls and N −m blue balls. Compute the marginal distribution of Xi, where Xi ∈ {0, 1}
indicates whether the i-th drawn ball is red. What does the result imply for the expected
number of red balls drawn?

4. Prove the alternative formula for the covariance, i.e., Cov [X,Y ] = E [X · Y ]−E [X ] ·E [Y ]
(Slide 6, Lecture 7).

5. Prove the general form of the Variance of Sum Formula (used in Lecture 11): For any random
variables X1, X2, . . . , Xn:

V

[
n∑

i=1

Xi

]
=

n∑
i=1

V [Xi ] + 2 ·
n∑

i=1

n∑
j=i+1

Cov [Xi, Xj ] .

6. Let X and Y be two random variables with covariance Cov [X,Y ]. How does the covariance
change if we instead take X ′ := α ·X and Y ′ := β · Y , and consider Cov [X ′, Y ′ ]? (cf. Slide
21)

7. Proof that the correlation coefficient is scaling-invariant (dimension-less) (Slide 12).

8. Complete the proof that the range of the correlation coefficient is in [−1, 1] (Slide 13).

9. Look up the definition of pairwise independence, and construct three random variables X,Y
and Z so that any pair of them is pairwise independent, but the three variables are not
independent. (Remark: to emphasise the difference between independence and pairwise in-
dependence, some sources use the term “mutual independence”.)

Lecture 8,9 (Markov, Chebyshev, Weak Law of Large Numbers,
Central Limit Theorem

1. Compute the density function of X1 + X2 + X3, where the Xi’s are independent random
variables with a continuous uniform distribution over [0, 1]. (Extension: Can you generalise
your result to the sum of n > 3 random variables?)

2. Prove Markov’s inequality. (Hint: This follows the lines of the proof of Chebyshev’s inequality
in the lecture notes.)

3. Give a proof of Chebyshev’s inequality that employs Markov’s inequality.

4. We consider the differences between the Law of Large Numbers and the Central Limit The-
orem. (Note that some parts of this question are not easy and go beyond what is covered in
this course.)

a) What are the differences between the Weak Law of Large Numbers, the Strong Law of
Large Numbers and the Central Limit Theorem (CLT)?

b) Why cannot we use the CLT to deduce the Strong Law of Large Numbers?

c) Demonstrate how the CLT can be used to deduce the Weak Law of Large Numbers.
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5. Let X1, X2, . . . , Xn be a sequence of i.i.d. random variables with mean µ and variance σ2.

Applying the CLT to
∑n/2

i=1Xi,
∑n

i=n/2+1Xi and
∑n

i=1Xi (after proper scaling and shifting),
which property of the standard normal distribution N (0, 1) can you deduce?

6. Consider throwing a fair, six-sided die 1000 times, and let Y ∈ {1, . . . , 1000} be the number
of times a six occurs. Use the Central Limit Theorem to find values a and b such that

P [ 100 6 Y 6 200 ] ≈
∫ b

a

1√
2π
e−

1
2
x2
dx.

7. For the example on multiple-choice exam questions (Slide 25), apply the Central Limit The-
orem to P [

∑n
i=1Ri > 5.5 ].

8. This question is related to the example loading a container with packets (Slide 19). Also here,
we assume that the packets have weights drawn independently from a Exp(1/2) distribution.

• How large must the capacity of the container be so that we can at least store 40 packets
with .99 probability?

• Optional: Try to explain how this type of application of the CLT differs from the one
on Slide 18 and on Slide 19.

9. Argue why the distribution Cau(2, 1) has no expectation and no variance.

10. Let X1, X2, . . . , Xn be independent samples from the Cau(2, 1) distribution. Give a justi-
fication why the average Xn does not converge. Hint: Exploit the fact that the sum of
independent Cauchy distributions is again a Cauchy distribution.

11. (Exercise on Slide 18) Let X̃n :=
∑n

i=1Xi, where the Xi’s are i.i.d. uniform random variables

in {−1,+1}. Using Stirling’s approximation for n!, conclude that P
[
X̃n = 0

]
= Θ(1/

√
n)

for even integers n.

12. (optional, related to the difference between the Weak Law of Large Numbers and Strong Law
of Large Numbers, and the difference between types of convergence) We define an infinite
sequence of random variables, X1, X2, . . . as follows. We first generate auxiliary random
variables, Y0, Y1, . . . which are independent and Yn ∼ Uni{0, 1, . . . , 2n − 1} (i.e., a discrete
uniform distribution). Then, we divide the integers into intervals Ij := [2j , 2j+1 − 1] for all
j = 0, 1, ... For each interval Ij = [2j , 2j+1 − 1], for every k ∈ Ij ,

Xk =

{
1 if k = 2j + Yj ,

0 otherwise.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
0

0.5

1
I0 I1 I2 I3 I4

n

Xn

Figure 1: Illustration of the sequence Xn until n = 31. In each interval there is exactly one sample
equal to 1, while the others are all equal to 0.
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a) Prove that for any ε > 0, limn→∞P [ |Xn| > ε ] = 0.

b) Prove that P [ limn→∞Xn = 0 ] is not equal 1.

Lecture 10,11 (Statistics and Estimators)

1. You model the time that you are spending each week on this course as independent samples
from an exponential distribution with unknown parameter λ. After 4 weeks, you record
2, 5, 4, 4 hours. Estimate 1/λ by using an unbiased estimator applied to this data set.

2. Compute the Mean-Squared-Error for the sample meanXn = 1
n ·
∑n

i=1Xi, whereX1, X2, . . . , Xn

are i.i.d. samples from some distribution.

3. Let X be a single sample from a Binomial distribution Bin(n, p). In each of the following
four cases, decide whether there exists an unbiased estimator and justify your answer.

a) Assume n is known, but p is unknown and we would like to estimate p.

b) Assume p is known, but n is unknown and we would like to estimate n.

c) Assume n and p ∈ (0, 1) are both unknown, and we would like to estimate n+ p.

d) Assume n and p are both unknown, and we would like to estimate n · p.

4. Let X be a single sample from a Bernoulli distribution Ber(p), where p is unknown. Can you
find an unbiased estimator for p2? Justify your answer.

5. Let X1, X2, . . . , be a sequence of independent and identically distributed samples from the
discrete uniform distribution over {1, 2, . . . , N}. Let Z := min {i > 1: Xi = Xi+1}. Compute
E [Z ] and E

[
(Z −N)2

]
. How can you obtain an unbiased estimator for N?

6. Prove the Mean Squared Error decomposition formula.

7. Let X1, X2, . . . , Xn be n i.i.d. samples from a normal distribution N(µ, σ2), where µ is un-
known but σ is known.

a) Prove that Z1 = X1, Z2 = Xn and Z3 = (Z1 + Z2)/2 are all unbiased estimators.

b) Which of the three estimators would you choose?

8. Let X1, X2, . . . , Xn be n i.i.d. random variables with finite µ and finite σ2. Prove that∑n
i=1(Xi −Xn)2 6

∑n
i=1(Xi − y)2, for any y ∈ R; here, Xn := 1

n

∑n
i=1Xi. What does this

imply for the two random variables
∑n

i=1(Xi −Xn)2 and
∑n

i=1(Xi − µ)2?

9. (see Lecture 11, Slide 6-7; a bit tricky) Consider the estimator T̃1 := max(T1,max(X1, X2, . . . , Xn)),
where T1 := 2 ·Xn−1. Using the Bias-Variance Decomposition, what can you conclude about
the estimator T̃1 in comparison to T1?
Hints:

a) Argue why T̃1 is not unbiased.

b) Try to relate MSE[T̃1] to MSE[T1], differentiating between the cases T1 6 max(X1, X2, . . . , Xn)
and T1 > max(X1, X2, . . . , Xn).

c) Using the Bias-Variance Decomposition, what does this imply for V
[
T̃1

]
versus V [T1 ]?
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10. Consider the following modification of the problem of estimating the population size. Instead
of sampling without replacement, we sample with replacement. What is the expected number
of items we need to sample until we have seen k different IDs?

11. Prove the Cauchy-Schwartz Inequality for random variables X and Y :

|E [X · Y ] | 6
√

E [X2 ]E [Y 2 ].

12. Let X be a random variable such that µ = E [X ] = 1/2 and V [X ] = 1. What can you
deduce about E [ ln(2X) ]? Hint: Apply Jensen.

13. (a bit tricky). Let X be a random variable with expectation µ, variance σ2 and median m.
Prove that |µ−m| 6 σ.

14. (Birthday problem) Let X count the number of collisions among k independent samples from
a discrete uniform distribution over {1, 2, . . . , n}.

a) What is E [X ]?

b) Prove that P [X > 0 ] ≈ 1− exp
(
−
(
k
2

)
· 1n
)

.

c) Describe how this could be used to obtain an estimator for the population size? (Your
estimator does not need to be unbiased) (see also slides of Lecture 11)

15. Consider the algorithm that stops until the first collision is found (Lecture 11). Prove that
the expected time until it stops is at most 2 ·

√
n, where n = |S| is the size of the unknown set.

Hint: Consider the realisation of the first
√
n samples x1, x2, . . . , x√n. Assuming these values

are all different, consider the first time until the k-th samples satisfies Xk ∈ {x1, . . . , x√n} for
any k >

√
n.

Lecture 12

1. What is the expected number of local maxima in the secretary problem for n candidates
(see Slide 6 of Lecture 12)? (a bit trickier:) Based on this result, suggest an algorithm that
outperforms the primitive approach on Slide 7.

2. Prove that if X1, X2, . . . , Xn are n independent samples from the continuous uniform distri-
bution Uni[0, 1], then for Z := max{X1, X2, . . . , Xn} it holds that E [Z ] = n

n+1 .

3. Assume n = 4 in the secretary problem, and for any 1 6 k 6 4 consider the strategy that
accepts the first candidate that is better than the previous k−1 candidates. For each possible
value of k, compute the probability of hiring the best candidate.

4. (a bit tricky). Consider the secretary problem and let I1, I2, . . . , In be the n random variables
where Ij = 1 if and only the j-th candidate is the best among the first j candidates. Prove
that these n random variables are independent.

5. (challenging.) The Parking Problem. You are driving along an infinite street toward your
destination, the theatre. There are parking places along the street but most of them are
taken. You want to park as close to the theatre as possible but you are not allowed to turn

8



around. If you see an empty parking place at a distance d before the theatre, should you take
it or not?

More specifically, assume you start at point 0 and we have a sequenceX0, X1, X2, . . . indicating
whether each parking place j = 0, 1, 2, . . . is filled or not. Each Xj is an independent Bernoulli
random variable with parameter p. By T we denote the (known) place of the theatre. The
goal is to minimise |T − τ |, where τ is place where you have parked your car.

6. Recall that in the secretary problem studied in Lecture 12, we assumed that the order of
candidates is random (i.e., the ranks of the secretary form a random permutation). Consider
now the case where we do not know anything about the order of the candidates (in other words,
there might be an adversary who is choosing the order so as to make our strategy perform as
poorly as possible). Prove that in this setting, the best possible success probability one can
achieve is Θ(1/n).

Acknowledgements: Thanks to Henry Batchelor and Marcus Handley for spotting typos and errors.
Also many thanks to Dimitrios Los for several corrections and additions to the model answers. Lastly, thanks
to Justin Lam for sharing his answer to the Parking Problem.
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