Introduction to Probability

Lectures 9: Central Limit Theorem Mateja Jamnik, <u>Thomas Sauerwald</u>

University of Cambridge, Department of Computer Science and Technology email: {mateja.jamnik,thomas.sauerwald}@cl.cam.ac.uk

Faster 2025

Outline

Recap: Weak Law of Large Numbers

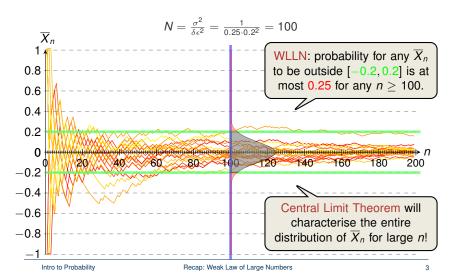
Central Limit Theorem

Illustrations

Examples

Weak Law of Large Numbers (4/4)

Weak Law of Large Numbers: For any
$$\epsilon > 0$$
, $\lim_{n \to \infty} \mathbf{P} \left[|\overline{X}_n - \mu| > \epsilon \right] = 0$
 $\Rightarrow \quad \epsilon = 0.2, \delta = 0.25, \exists N : \forall n \ge N : \mathbf{P} \left[|\overline{X}_n - \mu| > 0.2 \right] \le 0.25$



Outline

Recap: Weak Law of Large Numbers

Central Limit Theorem

Illustrations

Examples

Towards the CLT: Finding the Right Scaling

• Let X_1, X_2, \ldots i.i.d. with $\mu = 0$ and finite σ^2

- The Sum

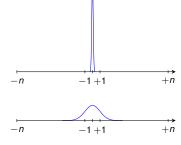
- Let $\widetilde{X}_n := \sum_{i=1}^n X_i$ (often denoted by S_n)
- The variance is $\mathbf{V}\left[\widetilde{X}_n\right] = n\sigma^2 \to \infty$

$$-n$$
 0 $+n$

- The Sample Average (Sample Mean) -

- Let $\overline{X}_n := \frac{1}{n} \cdot \sum_{i=1}^n X_i$
- The variance is $\mathbf{V}\left[\overline{X}_n\right] = \sigma^2/n \to 0$

- Let $Z_n := \frac{1}{\sqrt{n} \cdot \sigma} \cdot \sum_{i=1}^n X_i$
- The variance is $\mathbf{V}[Z_n] = 1$



Central Limit Theorem

A. de Moivre (1667-1754) P.-S. de Laplace (1749-1827) C. Gauss (1777-1855) A. Lyapunov (1857-1918) C. Lindeberg (1876-1932)

Central Limit Theorem

Let X_1, X_2, \ldots be any sequence of independent identically distributed random variables with finite expectation μ and finite variance σ^2 . Let

$$Z_n := \sqrt{n} \cdot \frac{\overline{X}_n - \mu}{\sigma} = \frac{1}{\sqrt{n} \cdot \sigma} \cdot \left(\sum_{i=1}^n X_i - n \cdot \mu \right)$$

Then for any number $a \in \mathbb{R}$, it holds that

$$\lim_{n\to\infty}F_{Z_n}(a)=\Phi(a)=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^a e^{-x^2/2}dx,$$

where Φ is the distribution function of the $\mathcal{N}(0,1)$ distribution.

In words: the distribution of Z_n always converges to the distribution function Φ of the standard normal distribution.

Comments on the CLT

- one of the most remarkable results in probability/statistics
- extremely useful tool in data analysis or physical measurements
 - we may not know the actual distribution in real-world, and CLT says we don't have to(!)
 - adding up independent noises in measurements leads to an error following the Normal distribution
 - applies also to sums of random variables which may be unbounded
- catch: the CLT only holds approximately, i.e., for large n

When is the approximation good?

- usually $n \ge 10$ or $n \ge 15$ is sufficient in practice
- approximation tends to be worse when threshold a is far from 0, distribution of X_i's asymmetric, bimodal or discrete
- (for a result quantifying the approximation error: Berry-Esseen-Theorem)

Intro to Probability Central Limit Theorem

7

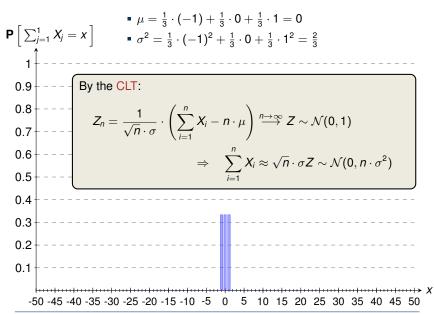
Outline

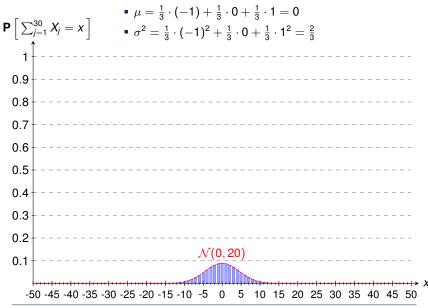
Recap: Weak Law of Large Numbers

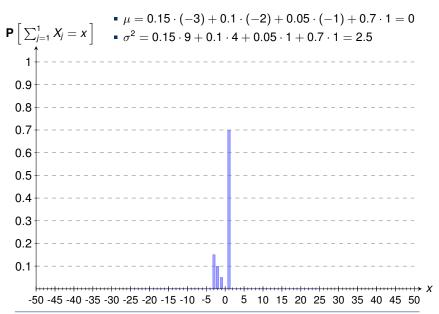
Central Limit Theorem

Illustrations

Examples







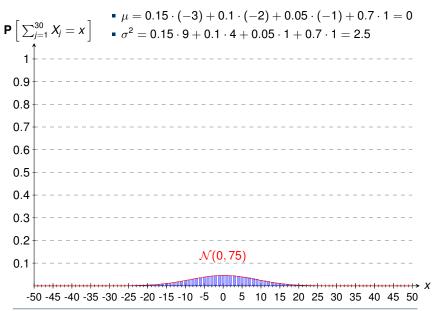


Illustration of CLT (3, Part I) (Distribution from Lecture 8)

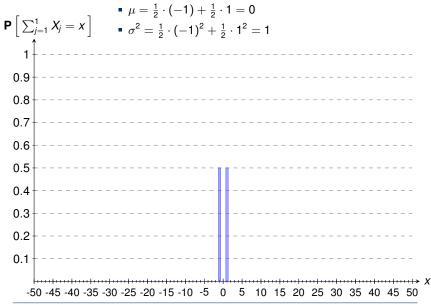


Illustration of CLT (3, Part I) (Distribution from Lecture 8)

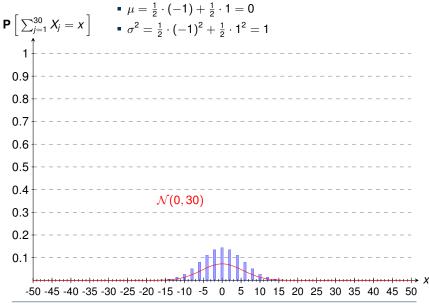


Illustration of CLT (3, Part I) (Distribution from Lecture 8)

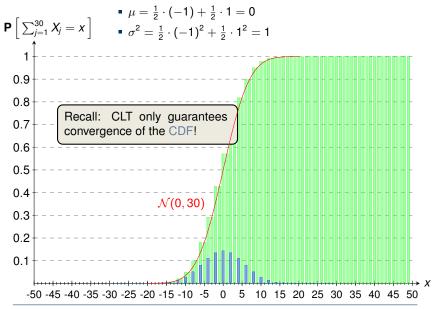


Illustration of CLT (3, Part II) (Distribution from Lecture 8)

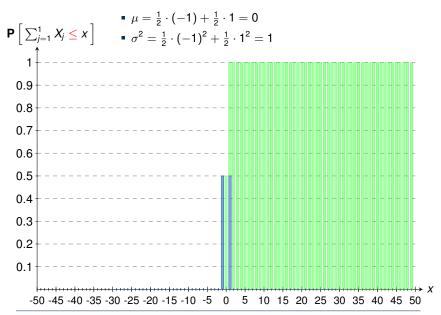
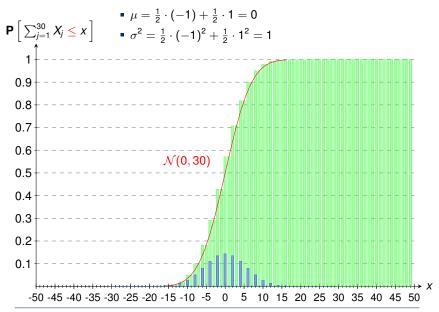


Illustration of CLT (3, Part II) (Distribution from Lecture 8)



Please see the full slides for the illustration!

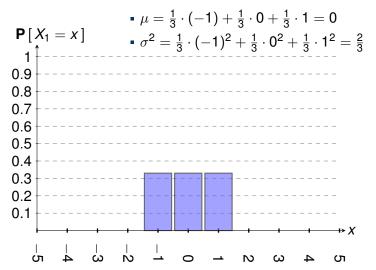


Illustration of CLT (4, Part II) with Standardising

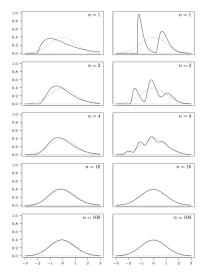


Fig. 14.2. Densities of standardized averages Z_n . Left column: from a gamma density; right column: from a bimodal density. Dotted line: N(0,1) probability density.

Source: Dekking et al., Modern Introduction to Statistics

Outline

Recap: Weak Law of Large Numbers

Central Limit Theorem

Illustrations

Examples

Section 5.4 Normal Random Variables 201

TABLE 5.1: AREA $\Phi(\mathbf{x})$ UNDER THE STANDARD NORMAL CURVE TO THE LEFT OF \mathbf{X}										
X	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
.0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359
.1	.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675	.5714	.5753
.2	.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103	.6141
.3	.6179	.6217	.6255	.6293	.6331	.6368	.6406	.6443	.6480	.6517
.4	.6554	.6591	.6628	.6664	.6700	.6736	.6772	.6808	.6844	.6879
.5	.6915	.6950	.6985	.7019	.7054	.7088	.7123	.7157	.7190	.7224
.6	.7257	.7291	.7324	.7357	.7389	.7422	.7454	.7486	.7517	.7549
.7	.7580	.7611	.7642	.7673	.7704	.7734	.7764	.7794	.7823	.7852
.8	.7881	.7910	.7939	.7967	.7995	.8023	.8051	.8078	.8106	.8133
.9	.8159	.8186	.8212	.8238	.8264	.8289	.8315	.8340	.8365	.8389
1.0	.8413	.8438	.8461	.8485	.8508	.8531	.8554	.8577	.8599	.8621
1.1	.8643	.8665	.8686	.8708	.8729	.8749	.8770	.8790	.8810	.8830
1.2	.8849	.8869	.8888	.8907	.8925	.8944	.8962	.8980	.8997	.9015
1.3	.9032	.9049	.9066	.9082	.9099	.9115	.9131	.9147	.9162	.9177
1.4	.9192	.9207	.9222	.9236	.9251	.9265	.9279	.9292	.9306	.9319
1.5	.9332	.9345	.9357	.9370	.9382	.9394	.9406	.9418	.9429	.9441
1.6	.9452	.9463	.9474	.9484	.9495	.9505	.9515	.9525	.9535	.9545
1.7	.9554	.9564	.9573	.9582	.9591	.9599	.9608	.9616	.9625	.9633
1.8	.9641	.9649	.9656	.9664	.9671	.9678	.9686	.9693	.9699	.9706
1.9	.9713	.9719	.9726	.9732	.9738	.9744	.9750	.9756	.9761	.9767
0.5	.9772	.9778	.9783	.9788	.9793	.9798	.9803	.9808	.9812	.9817
2.1	.9821	.9826	.9830	.9834	.9838	.9842	.9846	.9850	.9854	.9857
2.2	.9861	.9864	.9868	.9871	.9875	.9878	.9881	.9884	.9887	.9890
2.3	.9893	.9896	.9898	.9901	.9904	.9906	.9909	.9911	.9913	.9916
2.4	.9918	.9920	.9922	.9925	.9927	.9929	.9931	.9932	.9934	.9936
2.5	.9938	.9940	.9941	.9943	.9945	.9946	.9948	.9949	.9951	.9952
2.6	.9953	.9955	.9956	.9957	.9959	.9960	.9961	.9962	.9963	.9964
2.7	.9965	.9966	.9967	.9968	.9969	.9970	.9971	.9972	.9973	.9974
2.8	.9974	.9975	.9976	.9977	.9977	.9978	.9979	.9979	.9980	.9981
2.9	.9981	.9982	.9982	.9983	.9984	.9984	.9985	.9985	.9986	.9986
3.0	.9987	.9987	.9987	.9988	.9988	.9989	.9989	.9989	.9990	.9990
3.1	.9990	.9991	.9991	.9991	.9992	.9992	.9992	.9992	.9993	.9993
3.2	.9993	.9993	.9994	.9994	.9994	.9994	.9994	.9995	.9995	.9995
3.3	.9995	.9995	.9995	.9996	.9996	.9996	.9996	.9996	.9996	.9997
3.4	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9998

Source: Ross, Probability 8th ed.

$$Z \sim \mathcal{N}(0,1)$$
 $\mathbf{P}[Z \leq X] = \Phi(X)$

Question: What if we need $\Phi(x)$ for negative x?

Due to symmetry of density we have
$$\Phi(x) = 1 - \Phi(-x)$$
.

Intro to Probability Examples 16

Normal Approximation of the Binomial Distribution

Example 1

Suppose you are attending a multiple-choice exam of 10 questions and you are completely unprepared. Each question has 4 choices, and you are going to pass the exam if you guess at least 6 correct answers. Use the normal approximation to estimate the probability of passing.

- Let $X \sim Bin(10, 1/4)$. We are interested in $P[X \ge 6]$.
- Note $X := \sum_{i=1}^{n} X_i$, where each $X_i \sim Ber(p)$ and n = 10, p = 1/4. $\Rightarrow \mu = 1/4 \text{ and } \sigma^2 = p(1-p) = 3/16.$

$$\mathbf{P}[X \ge 6] = \mathbf{P}\left[\sum_{i=1}^{n} X_i \ge 6\right]$$
approximation is obtained by
$$\mathbf{P}\left[\sum_{i=1}^{n} X_i \ge 5.5\right] \implies \approx 0.0143$$

continuity correction: a better

$$= \mathbf{P} \left[\frac{\sum_{i=1}^{n} X_i - n\mu}{\sqrt{n}\sigma} \ge \frac{6 - n\mu}{\sqrt{n}\sigma} \right]$$
True value is 0.0197. Error lies in the discretisation!

5 6 7 =
$$\mathbf{P} \mid Z_{10} \geq \frac{6-\sqrt{10}}{\sqrt{10}}$$

5 6 7 =
$$\mathbf{P} \left[Z_{10} \ge \frac{6 - 2.5}{\sqrt{10} \cdot \sqrt{3/16}} \right] \approx 1 - \Phi(2.56) \approx 0.0052.$$

Example 2 -

Suppose we are sequentially loading one container with packets, whose weights are i.i.d. exponential variables with parameter $\lambda=1/2$. The container has a capacity of 100 weight units. How many packets can we load so that we meet the capacity threshold with at least .95 probability?

Answer

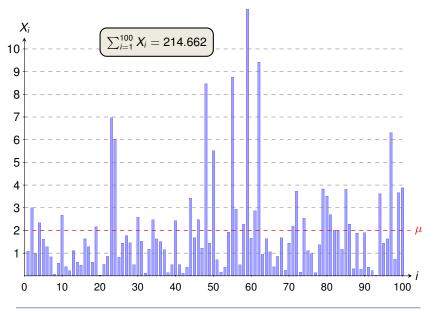
- We have $X_1, X_2, \dots, X_n \sim Exp(1/2)$, where n is unknown.
- Recall that $\mu = \sigma = 2$.
- By the CLT,

$$\mathbf{P}\left[\sum_{i=1}^{n} X_{i} \le 100\right] = \mathbf{P}\left[\frac{\sum_{i=1}^{n} X_{i} - 2n}{2\sqrt{n}} \le \frac{100 - 2n}{2\sqrt{n}}\right]$$

$$\approx \Phi\left(\frac{100 - 2n}{2\sqrt{n}}\right) \stackrel{!}{=} 0.95.$$

- Using a normal table (looking for value 0.95) yields: $\frac{100-2n}{2\sqrt{n}} = 1.645$.
- \Rightarrow Solving the quadratic gives $n \le 39.6$ (so $n \le 39$)

A Sample of 100 Exponential Random Variables Exp(1/2)



Intro to Probability Examples 19

Comparison between Markov, Chebyshev and CLT

Example 3

Consider n = 100 independent coin flips. Estimate the probability that the number of heads is greater or equal than 75.

■ Markov:
$$X = \sum_{i=1}^{100} X_i, X_i \in \{0,1\}$$
 and $\mathbf{E}[X] = 100 \cdot \frac{1}{2} = 50$.

$$P[X \ge 3/2 \cdot E[X]] \le 2/3 = 0.666.$$

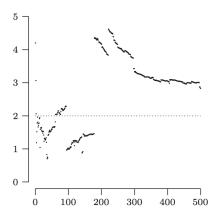
• Chebyshev: $V[X] = \sum_{i=1}^{100} V[X_i] = 100 \cdot (1/2)^2 = \underline{25}$.

$$\mathbf{P}[|X - \mu| \ge 25] \le \frac{\mathbf{V}[X]}{25^2} = \frac{1}{25} = 0.04.$$
 As *X* is symmetric, we could deduce probability is at most 0.02.

• Central Limit Theorem: First standardise: $Z_n = \frac{X - n \cdot 1/2}{\sqrt{n} \cdot 1/2}$

$$\mathbf{P}[X \ge 74.5] = \mathbf{P}\left[Z_n \ge \frac{74.5 - n \cdot 1/2}{\sqrt{n} \cdot 1/2}\right] \approx 1 - \Phi(4.9) = 4.79 \cdot 10^{-7}$$

- Side Note: without continuity correction, we have 75 instead 74.5:
 - This leads to $1 \Phi(5) = 2.86 \cdot 10^{-7}$
 - Issue: threshold too large ($\mathbf{P}[X > a] \approx \mathbf{P}[X = a]$) \Rightarrow CLT less precise
 - In this region, 75 gives a better approximation than 74.5, but for smaller values (e.g., < 63) the continuity corrections gives significantly better results.



Cau(2, 1) distribution, Source: Dekking et al., Modern Introduction to Statistics

The Cauchy distribution has "too heavy" tails (no expectation), in particular the average does not converge.

21