Introduction to Probability

Lecture 8: Basic Inequalities and Law of Large Numbers

Mateja Jamnik, Thomas Sauerwald

University of Cambridge, Department of Computer Science and Technology email: {mateja.jamnik,thomas.sauerwald}@cl.cam.ac.uk

Faster 2025

Outline

Introduction

Markov's Inequality and Chebyshev's Inequality

Weak Law of Large Numbers

Example 1

Let X_1 and X_2 be two independent random variables, both uniformly distributed on [0,1]. How does the probability density of $X_1 + X_2$ look like? What happens for $X_1 + X_2 + X_3$ etc.?

Answer

Example 1

Let X_1 and X_2 be two independent random variables, both uniformly distributed on [0,1]. How does the probability density of $X_1 + X_2$ look like? What happens for $X_1 + X_2 + X_3$ etc.?

Answer

Example 1

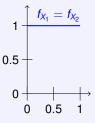
Let X_1 and X_2 be two independent random variables, both uniformly distributed on [0,1]. How does the probability density of $X_1 + X_2$ look like? What happens for $X_1 + X_2 + X_3$ etc.?

Answer

Example 1

Let X_1 and X_2 be two independent random variables, both uniformly distributed on [0,1]. How does the probability density of $X_1 + X_2$ look like? What happens for $X_1 + X_2 + X_3$ etc.?

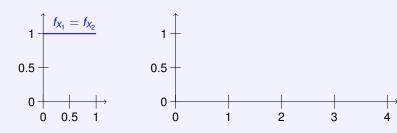
Answer



Example 1

Let X_1 and X_2 be two independent random variables, both uniformly distributed on [0,1]. How does the probability density of $X_1 + X_2$ look like? What happens for $X_1 + X_2 + X_3$ etc.?

Answer

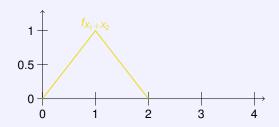


Example 1

Let X_1 and X_2 be two independent random variables, both uniformly distributed on [0,1]. How does the probability density of $X_1 + X_2$ look like? What happens for $X_1 + X_2 + X_3$ etc.?

Answer

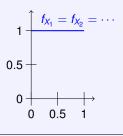


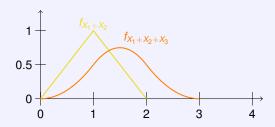


Example 1

Let X_1 and X_2 be two independent random variables, both uniformly distributed on [0,1]. How does the probability density of $X_1 + X_2$ look like? What happens for $X_1 + X_2 + X_3$ etc.?

Answer

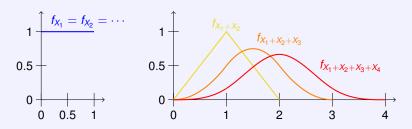




Example 1

Let X_1 and X_2 be two independent random variables, both uniformly distributed on [0,1]. How does the probability density of $X_1 + X_2$ look like? What happens for $X_1 + X_2 + X_3$ etc.?

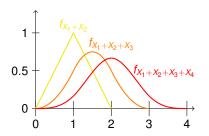
Answer

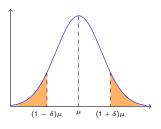


^aThis is also called "convolution". The detailed calculation for $f_{X_1+X_2}$ can be found at the end of these slides. The exact distribution is known for any number of random variables under the name Irwin-Hall distribution.

Motivation

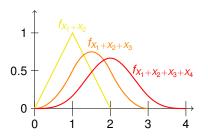
We will study sums of independent and identically distributed variables. How does their distribution look like, and how well do they concentrate around the expectation?

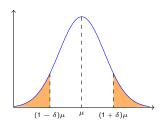




Motivation

We will study sums of independent and identically distributed variables. How does their distribution look like, and how well do they concentrate around the expectation?

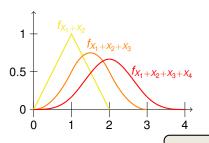


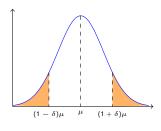


- 1. Markov's inequality
- 2. Chebyshev's inequality
- 3. Law of Large Numbers
- 4. Central Limit Theorem

Motivation

We will study sums of independent and identically distributed variables. How does their distribution look like, and how well do they concentrate around the expectation?





- Markov's inequality
- 2. Chebyshev's inequality
- 3. Law of Large Numbers
- 4. Central Limit Theorem

- Re-use concepts from previous lectures:
- 1. Independence (Random Var.) (Lec. 1, 7)
- 2. Expectation and Variance (Lec. 2, 3)
- 3. Normal Distribution (Lec. 5)
- 4. Sums of Random Variables (Lec. 6)

Outline

Introduction

Markov's Inequality and Chebyshev's Inequality

Weak Law of Large Numbers

Markov's Inequality

For any non-negative random variable X with finite $\mathbf{E}[X]$, it holds for any a > 0,

$$\mathbf{P}[X \geq a] \leq \frac{\mathbf{E}[X]}{a}.$$

A. Markov (1856-1922)

Markov's Inequality

For any non-negative random variable X with finite $\mathbf{E}[X]$, it holds for any a > 0,

$$\mathbf{P}[X \ge a] \le \frac{\mathbf{E}[X]}{a}.$$

Markov's inequality is a so-called tail-bound: it upper bounds the probability that the random variable exceeds its mean

A. Markov (1856-1922)

Markov's Inequality

For any non-negative random variable X with finite $\mathbf{E}[X]$, it holds for any a > 0,

$$\mathbf{P}[X \ge a] \le \frac{\mathbf{E}[X]}{a}.$$

Markov's inequality is a so-called tail-bound: it upper bounds the probability that the random variable exceeds its mean

A. Markov (1856-1922)

Comments:

Markov's Inequality

For any non-negative random variable X with finite $\mathbf{E}[X]$, it holds for any a > 0,

$$\mathbf{P}[X \ge a] \le \frac{\mathbf{E}[X]}{a}.$$

Markov's inequality is a so-called tail-bound: it upper bounds the probability that the random variable exceeds its mean

A. Markov (1856-1922)

Comments:

• Markov's inequality can be rewritten as: for any $\delta > 0$,

$$P[X \ge \delta \cdot E[X]] \le 1/\delta.$$

Markov's Inequality

For any non-negative random variable X with finite $\mathbf{E}[X]$, it holds for any a > 0,

$$\mathbf{P}[X \ge a] \le \frac{\mathbf{E}[X]}{a}.$$

Markov's inequality is a so-called tail-bound: it upper bounds the probability that the random variable exceeds its mean

A. Markov (1856-1922)

Comments:

• Markov's inequality can be rewritten as: for any $\delta > 0$,

$$P[X \ge \delta \cdot E[X]] \le 1/\delta.$$

- Advantage: Very basic inequality, we only need to know E[X]
- Downside: For many distributions, the tail bound might be quite loose
- Proof is similar to the proof of Chebyshev's inequality (Exercise!)

Example 2

Consider throwing an unbiased, six-sided dice 120 times and let *X* denote the number of times we obtain a six.

- 1. Derive an upper bound on $P[X \ge 30]$.
- 2. Can you also derive an upper bound on $P[X \le 10]$?

Answer

Example 2

Consider throwing an unbiased, six-sided dice 120 times and let *X* denote the number of times we obtain a six.

- 1. Derive an upper bound on $P[X \ge 30]$.
- 2. Can you also derive an upper bound on $P[X \le 10]$?
- 1. First compute **E**[X]

Example 2

Consider throwing an unbiased, six-sided dice 120 times and let *X* denote the number of times we obtain a six.

- 1. Derive an upper bound on $P[X \ge 30]$.
- 2. Can you also derive an upper bound on $P[X \le 10]$?

Answer

1. First compute $\mathbf{E}[X] = 1/6 \cdot 120 = 20$

Example 2

Consider throwing an unbiased, six-sided dice 120 times and let *X* denote the number of times we obtain a six.

- 1. Derive an upper bound on $P[X \ge 30]$.
- 2. Can you also derive an upper bound on $P[X \le 10]$?

Answer

Example 2

Consider throwing an unbiased, six-sided dice 120 times and let *X* denote the number of times we obtain a six.

- 1. Derive an upper bound on $P[X \ge 30]$.
- 2. Can you also derive an upper bound on $P[X \le 10]$?

Answer

P[
$$X \ge 30$$
]

Example 2

Consider throwing an unbiased, six-sided dice 120 times and let *X* denote the number of times we obtain a six.

- 1. Derive an upper bound on $P[X \ge 30]$.
- 2. Can you also derive an upper bound on $P[X \le 10]$?

Answer

$$\mathbf{P}[X \ge 30] \le \frac{20}{30} = \frac{2}{3}.$$

Example 2

Consider throwing an unbiased, six-sided dice 120 times and let *X* denote the number of times we obtain a six.

- 1. Derive an upper bound on $P[X \ge 30]$.
- 2. Can you also derive an upper bound on $P[X \le 10]$?

nswer

1. First compute $\mathbf{E}[X] = 1/6 \cdot 120 = 20$. Then by Markov:

$$P[X \ge 30] \le \frac{20}{30} = \frac{2}{3}.$$

2. Consider now the second bound.

Example 2

Consider throwing an unbiased, six-sided dice 120 times and let *X* denote the number of times we obtain a six.

- 1. Derive an upper bound on $P[X \ge 30]$.
- 2. Can you also derive an upper bound on $P[X \le 10]$?

Answer

$$P[X \ge 30] \le \frac{20}{30} = \frac{2}{3}.$$

- 2. Consider now the second bound.
 - Define a new random variable Y := 120 X.

Example 2

Consider throwing an unbiased, six-sided dice 120 times and let *X* denote the number of times we obtain a six.

- 1. Derive an upper bound on $P[X \ge 30]$.
- 2. Can you also derive an upper bound on $P[X \le 10]$?

Answer

$$\mathbf{P}[X \ge 30] \le \frac{20}{30} = \frac{2}{3}.$$

- 2. Consider now the second bound.
 - Define a new random variable Y := 120 X.
 - \Rightarrow This random variable is also non-negative (as $X \le 120$).

Example 2

Consider throwing an unbiased, six-sided dice 120 times and let *X* denote the number of times we obtain a six.

- 1. Derive an upper bound on $P[X \ge 30]$.
- 2. Can you also derive an upper bound on $P[X \le 10]$?

nswer

$$P[X \ge 30] \le \frac{20}{30} = \frac{2}{3}.$$

- 2. Consider now the second bound.
 - Define a new random variable Y := 120 X.
 - \Rightarrow This random variable is also non-negative (as $X \le 120$).
 - Applying Markov's inequality (equivalent version) to Y yields:

Example 2

Consider throwing an unbiased, six-sided dice 120 times and let *X* denote the number of times we obtain a six.

- 1. Derive an upper bound on $P[X \ge 30]$.
- 2. Can you also derive an upper bound on $P[X \le 10]$?

nswer

$$P[X \ge 30] \le \frac{20}{30} = \frac{2}{3}.$$

- 2. Consider now the second bound.
 - Define a new random variable Y := 120 X.
 - \Rightarrow This random variable is also non-negative (as $X \le 120$).
 - Applying Markov's inequality (equivalent version) to Y yields:

$$P[X \le 10] = P[Y \ge 110]$$

Example 2

Consider throwing an unbiased, six-sided dice 120 times and let *X* denote the number of times we obtain a six.

- 1. Derive an upper bound on $P[X \ge 30]$.
- 2. Can you also derive an upper bound on $P[X \le 10]$?

nswer

$$\mathbf{P}[X \ge 30] \le \frac{20}{30} = \frac{2}{3}.$$

- 2. Consider now the second bound.
 - Define a new random variable Y := 120 X.
 - \Rightarrow This random variable is also non-negative (as $X \le 120$).
 - Applying Markov's inequality (equivalent version) to Y yields:

$$P[X \le 10] = P[Y \ge 110] = P[Y \ge \frac{110}{100} \cdot E[Y]]$$

Example 2

Consider throwing an unbiased, six-sided dice 120 times and let *X* denote the number of times we obtain a six.

- 1. Derive an upper bound on $P[X \ge 30]$.
- 2. Can you also derive an upper bound on $P[X \le 10]$?

Answer

$$P[X \ge 30] \le \frac{20}{30} = \frac{2}{3}.$$

- 2. Consider now the second bound.
 - Define a new random variable Y := 120 X.
 - \Rightarrow This random variable is also non-negative (as $X \le 120$).
 - Applying Markov's inequality (equivalent version) to Y yields:

$$P[X \le 10] = P[Y \ge 110] = P\left[Y \ge \frac{110}{100} \cdot E[Y]\right]$$
$$\le \frac{100}{110} = \frac{10}{11}.$$

Example 2

Consider throwing an unbiased, six-sided dice 120 times and let *X* denote the number of times we obtain a six.

- 1. Derive an upper bound on $P[X \ge 30]$.
- 2. Can you also derive an upper bound on $P[X \le 10]$?

Answer

1. First compute $\mathbf{E}[X] = 1/6 \cdot 120 = 20$. Then by Markov:

$$P[X \ge 30] \le \frac{20}{30} = \frac{2}{3}.$$

- 2. Consider now the second bound.
 - Define a new random variable Y := 120 X.
 - \Rightarrow This random variable is also non-negative (as $X \le 120$).
 - Applying Markov's inequality (equivalent version) to Y yields:

$$P[X \le 10] = P[Y \ge 110] = P[Y \ge \frac{110}{100} \cdot E[Y]]$$

 $< \frac{100}{100} = \frac{10}{100}$

Both bounds, especially the second, are quite loose!

Chebyshev's Inequality

Chebyshev's Inequality

For any random variable X with finite $\mathbf{E}[X]$ and $\mathbf{V}[X]$, for any a>0,

$$P[|X - E[X]| \ge a] \le V[X]/a^2$$
.

P. Chebyshev (1821-1894)

Chebyshev's Inequality

Chebyshev's Inequality

For any random variable X with finite $\mathbf{E}[X]$ and $\mathbf{V}[X]$, for any a>0,

$$\mathbf{P}[|X - \mathbf{E}[X]| \ge a] \le \mathbf{V}[X]/a^2.$$

P. Chebyshev (1821-1894)

Comments:

can be rewritten as:

The " $\mu \pm$ a few σ " rule. Most of the probability mass is within a few standard deviations from μ .

$$\mathbf{P}\left[|X - \mathbf{E}[X]| \ge \sqrt{\delta \cdot \mathbf{V}[X]}\right] \le 1/\delta.$$

Chebyshev's Inequality

Chebyshev's Inequality

For any random variable X with finite $\mathbf{E}[X]$ and $\mathbf{V}[X]$, for any a > 0,

$$\mathbf{P}[|X - \mathbf{E}[X]| \ge a] \le \mathbf{V}[X]/a^2.$$

P. Chebyshev (1821-1894)

Comments:

can be rewritten as:

The " $\mu \pm$ a few σ " rule. Most of the probability mass is within a few standard deviations from μ .

$$\mathbf{P}\left[|X - \mathbf{E}[X]| \ge \sqrt{\delta \cdot \mathbf{V}[X]}\right] \le 1/\delta.$$

- Unlike Markov, Chebyshev's inequality is two-sided and also holds for random variables with negative values
- In most cases, Chebyshev's inequality yields much stronger bounds than Markov (however, it requires knowledge not only of E[X] but also V[X]!)

Chebyshev's Inequality

Chebyshev's Inequality

For any random variable X with finite $\mathbf{E}[X]$ and $\mathbf{V}[X]$, for any a > 0,

$$\mathbf{P}[|X - \mathbf{E}[X]| \ge a] \le \mathbf{V}[X]/a^2.$$

P. Chebyshev (1821-1894)

Comments:

can be rewritten as:

The " $\mu \pm$ a few σ " rule. Most of the probability mass is within a few standard deviations from μ .

$$\mathbf{P}\left[|X - \mathbf{E}[X]| \ge \sqrt{\delta \cdot \mathbf{V}[X]}\right] \le 1/\delta.$$

- Unlike Markov, Chebyshev's inequality is two-sided and also holds for random variables with negative values
- In most cases, Chebyshev's inequality yields much stronger bounds than Markov (however, it requires knowledge not only of E [X] but also V [X]!)
- Chebyshev's inequality is also known as Second Moment Method

 We will give a self-contained proof for a continuous random variable X (the case for discrete X is analogous).

Proof

- We will give a self-contained proof for a continuous random variable X (the case for discrete X is analogous).
- Write down the definition of V [X] and then lower bound:

$$\mathbf{V}[X] = \mathbf{E}\left[(X - \mu)^2\right] = \int_{-\infty}^{\infty} (X - \mu)^2 \cdot f_X(X) \, dX$$

Proof

- We will give a self-contained proof for a continuous random variable X (the case for discrete X is analogous).
- Write down the definition of V [X] and then lower bound:

$$\mathbf{V}[X] = \mathbf{E}\left[(X - \mu)^2\right] = \int_{-\infty}^{\infty} (x - \mu)^2 \cdot f_X(x) \, dx$$
$$\geq \int_{|x - \mu| > a} (x - \mu)^2 \cdot f_X(x) \, dx$$

Proof

- We will give a self-contained proof for a continuous random variable X (the case for discrete X is analogous).
- Write down the definition of V [X] and then lower bound:

$$\mathbf{V}[X] = \mathbf{E}\left[(X - \mu)^2\right] = \int_{-\infty}^{\infty} (x - \mu)^2 \cdot f_X(x) \, dx$$

$$\geq \int_{|x - \mu| \geq a} (x - \mu)^2 \cdot f_X(x) \, dx$$

$$\geq \int_{|x - \mu| \geq a} a^2 \cdot f_X(x) \, dx$$

Proof

- We will give a self-contained proof for a continuous random variable X (the case for discrete X is analogous).
- Write down the definition of V [X] and then lower bound:

$$\mathbf{V}[X] = \mathbf{E}\left[(X - \mu)^2\right] = \int_{-\infty}^{\infty} (x - \mu)^2 \cdot f_X(x) \, dx$$

$$\geq \int_{|x - \mu| \geq a} (x - \mu)^2 \cdot f_X(x) \, dx$$

$$\geq \int_{|x - \mu| \geq a} a^2 \cdot f_X(x) \, dx$$

$$= a^2 \cdot \int_{|x - \mu| \geq a} f_X(x) \, dx$$

Proof -

- We will give a self-contained proof for a continuous random variable X (the case for discrete X is analogous).
- Write down the definition of V [X] and then lower bound:

$$\mathbf{V}[X] = \mathbf{E}\left[(X - \mu)^2 \right] = \int_{-\infty}^{\infty} (x - \mu)^2 \cdot f_X(x) \, dx$$

$$\geq \int_{|x - \mu| \geq a} (x - \mu)^2 \cdot f_X(x) \, dx$$

$$\geq \int_{|x - \mu| \geq a} a^2 \cdot f_X(x) \, dx$$

$$= a^2 \cdot \int_{|x - \mu| \geq a} f_X(x) \, dx$$

$$= a^2 \cdot \mathbf{P}[|X - \mu| > a].$$

Proof

- We will give a self-contained proof for a continuous random variable X (the case for discrete X is analogous).
- Write down the definition of V [X] and then lower bound:

$$\mathbf{V}[X] = \mathbf{E}\left[(X - \mu)^2 \right] = \int_{-\infty}^{\infty} (x - \mu)^2 \cdot f_X(x) \, dx$$

$$\geq \int_{|x - \mu| \geq a} (x - \mu)^2 \cdot f_X(x) \, dx$$

$$\geq \int_{|x - \mu| \geq a} a^2 \cdot f_X(x) \, dx$$

$$= a^2 \cdot \int_{|x - \mu| \geq a} f_X(x) \, dx$$

$$= a^2 \cdot \mathbf{P}[|X - \mu| > a].$$

• Dividing both sides by a^2 yields the result.

Example 3
· ·
Throw an unbiased coin n times and let X be the total number of
heads. In an experiment, with n large, we would usually expect a
number of heads that is close to the expectation. Can we justify that?

Example 3

Throw an unbiased coin n times and let X be the total number of heads. In an experiment, with n large, we would usually expect a number of heads that is close to the expectation. Can we justify that?

Δnewer

$$X \sim Bin(n, 1/2)$$
 so $\mathbf{E}[X] = n \cdot \frac{1}{2}$.

Example 3

Throw an unbiased coin n times and let X be the total number of heads. In an experiment, with n large, we would usually expect a number of heads that is close to the expectation. Can we justify that?

Answer

$$X \sim Bin(n, 1/2)$$
 so **E**[X] = $n \cdot \frac{1}{2}$.

• Markov's inequality: For any $\delta > 0$,

$$\mathbf{P}[X \ge (1+\delta) \cdot \mathbf{E}[X]] \le \frac{1}{1+\delta}$$

Example 3

Throw an unbiased coin n times and let X be the total number of heads. In an experiment, with n large, we would usually expect a number of heads that is close to the expectation. Can we justify that?

$$X \sim Bin(n, 1/2)$$
 so **E**[X] = $n \cdot \frac{1}{2}$.

Not good! Independent of n

• Markov's inequality: For any $\delta > 0$,

$$P[X \ge (1+\delta) \cdot E[X]] \le \frac{1}{1+\delta}$$

Example 3

Throw an unbiased coin n times and let X be the total number of heads. In an experiment, with n large, we would usually expect a number of heads that is close to the expectation. Can we justify that?

$$X \sim Bin(n, 1/2)$$
 so **E**[X] = $n \cdot \frac{1}{2}$.

Not good! Independent of n

• Markov's inequality: For any $\delta > 0$,

s) **E**[V]] 1

$$\mathbf{P}[X \ge (1+\delta) \cdot \mathbf{E}[X]] \le \frac{1}{1+\delta}$$

Chebychev's inequality:

Example 3

Throw an unbiased coin n times and let X be the total number of heads. In an experiment, with n large, we would usually expect a number of heads that is close to the expectation. Can we justify that?

$$X \sim Bin(n, 1/2)$$
 so $\mathbf{E}[X] = n \cdot \frac{1}{2}$.

Not good! Independent of n

• Markov's inequality: For any $\delta > 0$,

$$P[X \ge (1+\delta) \cdot E[X]] \le \frac{1}{1+\delta}$$

- Chebychev's inequality:
- \Rightarrow We have $\mathbf{V}[X] = np(1-p) = n \cdot 1/2 \cdot 1/2$. For any $\delta > 0$,

Example 3

Throw an unbiased coin n times and let X be the total number of heads. In an experiment, with n large, we would usually expect a number of heads that is close to the expectation. Can we justify that?

$$X \sim Bin(n, 1/2)$$
 so $\mathbf{E}[X] = n \cdot \frac{1}{2}$.

Not good! Independent of n

• Markov's inequality: For any $\delta > 0$,

 $P[X \ge (1+\delta) \cdot E[X]] \le \frac{1}{1+\delta}$

$$\Rightarrow$$
 We have $\mathbf{V}[X] = np(1-p) = n \cdot 1/2 \cdot 1/2$. For any $\delta > 0$,

$$\begin{aligned} \mathbf{P}\big[X \geq (1+\delta) \cdot \mathbf{E}\big[X\big]\big] &= \mathbf{P}\big[X - \mathbf{E}\big[X\big] \geq \delta \cdot \mathbf{E}\big[X\big]\big] \\ &\leq \mathbf{P}\big[|X - n/2| \geq \delta \cdot (n/2)\big] \\ &\leq \frac{n \cdot 1/4}{\delta^2 (n/2)^2} = \frac{1}{\delta^2 n} \end{aligned}$$

Example 3

Throw an unbiased coin n times and let X be the total number of heads. In an experiment, with n large, we would usually expect a number of heads that is close to the expectation. Can we justify that?

Answer

$$X \sim Bin(n, 1/2)$$
 so **E** [X] = $n \cdot \frac{1}{2}$.

Not good! Independent of *n*

• Markov's inequality: For any $\delta > 0$,

$$\mathbf{P}[X \ge (1+\delta) \cdot \mathbf{E}[X]] \le \frac{1}{1+\delta}$$

- Chebychev's inequality:
- \Rightarrow We have $\mathbf{V}[X] = np(1-p) = n \cdot 1/2 \cdot 1/2$. For any $\delta > 0$,

$$\begin{aligned} \mathbf{P}\big[X \geq (1+\delta) \cdot \mathbf{E}\big[X\big]\big] &= \mathbf{P}\big[X - \mathbf{E}\big[X\big] \geq \delta \cdot \mathbf{E}\big[X\big]\big] \\ &\leq \mathbf{P}\big[|X - n/2| \geq \delta \cdot (n/2)\big] \\ &\leq \frac{n \cdot 1/4}{\delta^2 (n/2)^2} = \frac{1}{\delta^2 n} \end{aligned}$$

Much better! (Inversely) Linear in n

Outline

Introduction

Markov's Inequality and Chebyshev's Inequality

Weak Law of Large Numbers

The Weak Law of Large Numbers

Let $\overline{X}_n := 1/n \cdot \sum_{i=1}^n X_i$, where the X_i 's are i.i.d. with finite expectation μ and finite variance σ^2 .

= independent and identically distributed

The Weak Law of Large Numbers

Let $\overline{X}_n := 1/n \cdot \sum_{i=1}^n X_i$, where the X_i 's are i.i.d. with finite expectation μ and finite variance σ^2 .

= independent and identically distributed

The Weak Law of Large Numbers

Let $\overline{X}_n := 1/n \cdot \sum_{i=1}^n X_i$, where the X_i 's are i.i.d. with finite expectation μ and finite variance σ^2 . Then, for any $\epsilon > 0$,

$$\lim_{n\to\infty} \mathbf{P}\left[\,|\overline{X}_n-\mu|>\epsilon\,\right]=0$$

= independent and identically distributed

The Weak Law of Large Numbers

Let $\overline{X}_n := 1/n \cdot \sum_{i=1}^n X_i$, where the X_i 's are i.i.d. with finite expectation μ and finite variance σ^2 . Then, for any $\epsilon > 0$,

$$\lim_{n\to\infty}\mathbf{P}\left[\,|\overline{X}_n-\mu|>\epsilon\,\right]=0$$

= independent and identically distributed

The Weak Law of Large Numbers

Let $\overline{X}_n := 1/n \cdot \sum_{i=1}^n X_i$, where the X_i 's are i.i.d. with finite expectation μ and finite variance σ^2 . Then, for any $\epsilon > 0$,

$$\lim_{n\to\infty} \mathbf{P}\left[\left|\overline{X}_n - \mu\right| > \epsilon\right] = 0$$

 $\forall \epsilon > 0$:

= independent and identically distributed

The Weak Law of Large Numbers

Let $\overline{X}_n := 1/n \cdot \sum_{i=1}^n X_i$, where the X_i 's are i.i.d. with finite expectation μ and finite variance σ^2 . Then, for any $\epsilon > 0$,

$$\lim_{n\to\infty} \mathbf{P}\left[\,|\overline{X}_n - \mu| > \epsilon\,\right] = 0$$

 $\forall \epsilon > 0 \colon \forall \delta > 0 \colon$

= independent and identically distributed

The Weak Law of Large Numbers

Let $\overline{X}_n := 1/n \cdot \sum_{i=1}^n X_i$, where the X_i 's are i.i.d. with finite expectation μ and finite variance σ^2 . Then, for any $\epsilon > 0$,

$$\lim_{n\to\infty} \mathbf{P}\left[\left|\overline{X}_n - \mu\right| > \epsilon\right] = 0$$

 $\forall \epsilon > 0 \colon \forall \delta > 0 \colon \exists N > 0 \colon$

= independent and identically distributed

The Weak Law of Large Numbers

Let $\overline{X}_n := 1/n \cdot \sum_{i=1}^n X_i$, where the X_i 's are i.i.d. with finite expectation μ and finite variance σ^2 . Then, for any $\epsilon > 0$,

$$\lim_{n\to\infty} \mathbf{P}\left[\,|\overline{X}_n - \mu| > \epsilon\,\right] = 0$$

 $\forall \epsilon > 0 \colon \forall \delta > 0 \colon \exists N > 0 \colon \forall n \geq N \colon$

= independent and identically distributed

The Weak Law of Large Numbers

Let $\overline{X}_n := 1/n \cdot \sum_{i=1}^n X_i$, where the X_i 's are i.i.d. with finite expectation μ and finite variance σ^2 . Then, for any $\epsilon > 0$,

$$\lim_{n\to\infty} \mathbf{P}\left[\,|\overline{X}_n - \mu| > \epsilon\,\right] = 0$$

$$\forall \epsilon > 0 \colon \forall \delta > 0 \colon \exists N > 0 \colon \forall n \geq N \colon \mathbf{P}\left[|\overline{X}_n - \mu| > \epsilon \right] \leq \delta$$

= independent and identically distributed

The Weak Law of Large Numbers

Let $\overline{X}_n := 1/n \cdot \sum_{i=1}^n X_i$, where the X_i 's are i.i.d. with finite expectation μ and finite variance σ^2 . Then, for any $\epsilon > 0$,

$$\lim_{n\to\infty} \mathbf{P}\left[\,|\overline{X}_n - \mu| > \epsilon\,\right] = 0$$

$$\left\{ \forall \epsilon > 0 \colon \forall \delta > 0 \colon \exists N > 0 \colon \forall n \geq N \colon \mathbf{P} \left[|\overline{X}_n - \mu| > \epsilon \right] \leq \delta \right\}$$

• "Power of Averaging": repeated samples allow us to estimate μ

= independent and identically distributed

The Weak Law of Large Numbers

Let $\overline{X}_n := 1/n \cdot \sum_{i=1}^n X_i$, where the X_i 's are i.i.d. with finite expectation μ and finite variance σ^2 . Then, for any $\epsilon > 0$,

$$\lim_{n\to\infty} \mathbf{P}\left[\left|\overline{X}_n - \mu\right| > \epsilon\right] = 0$$

$$\left\{ \forall \epsilon > 0 \colon \forall \delta > 0 \colon \exists N > 0 \colon \forall n \geq N \colon |\mathbf{P}\left[|\overline{X}_n - \mu| > \epsilon\right] \leq \delta \right\}$$

• "Power of Averaging": repeated samples allow us to estimate μ

"For even the most stupid of men, by some instinct of nature, by himself and without any instruction (which is a remarkable thing), is convinced that the more observations have been made, the less danger there is of wandering from one's goal."

J. Bernoulli (1655-1705)

= independent and identically distributed

The Weak Law of Large Numbers -

Let $\overline{X}_n := 1/n \cdot \sum_{i=1}^n X_i$, where the X_i 's are i.i.d. with finite expectation μ and finite variance σ^2 . Then, for any $\epsilon > 0$,

$$\lim_{n\to\infty} \mathbf{P}\left[\left|\overline{X}_n - \mu\right| > \epsilon\right] = 0$$

$$\left\{ \forall \epsilon > 0 \colon \forall \delta > 0 \colon \exists N > 0 \colon \forall n \ge N \colon |\mathbf{P}\left[|\overline{X}_n - \mu| > \epsilon\right] \le \delta \right\}$$

- "Power of Averaging": repeated samples allow us to estimate μ
- A similar statement holds even if the X_i's are not identically distributed

"For even the most stupid of men, by some instinct of nature, by himself and without any instruction (which is a remarkable thing), is convinced that the more observations have been made, the less danger there is of wandering from one's goal."

J. Bernoulli (1655-1705

= <u>i</u>ndependent and <u>i</u>dentically <u>d</u>istributed

The Weak Law of Large Numbers -

Let $\overline{X}_n := 1/n \cdot \sum_{i=1}^n X_i$, where the X_i 's are i.i.d. with finite expectation μ and finite variance σ^2 . Then, for any $\epsilon > 0$,

$$\lim_{n\to\infty} \mathbf{P}\left[\left|\overline{X}_n - \mu\right| > \epsilon\right] = 0$$

$$\left\{ \forall \epsilon > 0 \colon \forall \delta > 0 \colon \exists N > 0 \colon \forall n \ge N \colon |\mathbf{P}\left[|\overline{X}_n - \mu| > \epsilon\right] \le \delta \right\}$$

- "Power of Averaging": repeated samples allow us to estimate μ
- A similar statement holds even if the X_i's are not identically distributed
- There is also a strong law of large numbers:

$$\mathbf{P}\left[\lim_{n\to\infty}\overline{X}_n=\mu\right]=1.$$

"For even the most stupid of men, by some instinct of nature, by himself and without any instruction (which is a remarkable thing), is convinced that the more observations have been made, the less danger there is of wandering from one's goal."

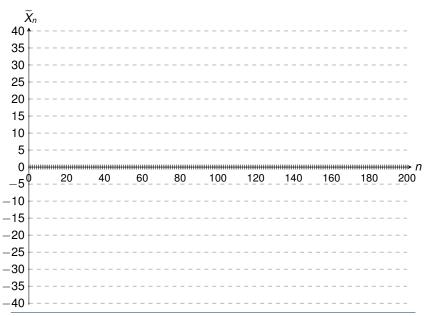
J. Bernoulli (1655-1705

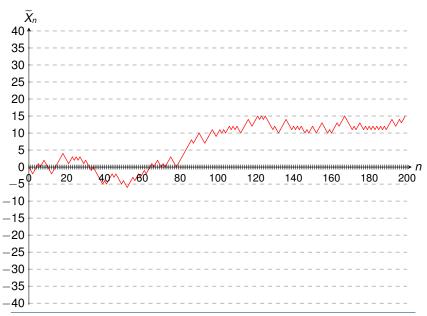
■ Let X_i be independent random variables taking values $\in \{-1, +1\}$ with probability 1/2 each

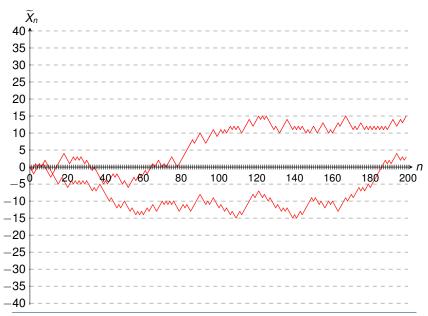
- Let X_i be independent random variables taking values $\in \{-1, +1\}$ with probability 1/2 each
- Consider $\widetilde{X}_n := \sum_{i=1}^n X_i$ for any $n = 0, 1, \dots, 200$

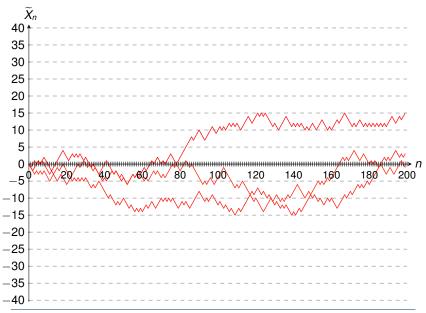
- Let X_i be independent random variables taking values $\in \{-1, +1\}$ with probability 1/2 each
- Consider $\widetilde{X}_n := \sum_{i=1}^n X_i$ for any $n = 0, 1, \dots, 200$

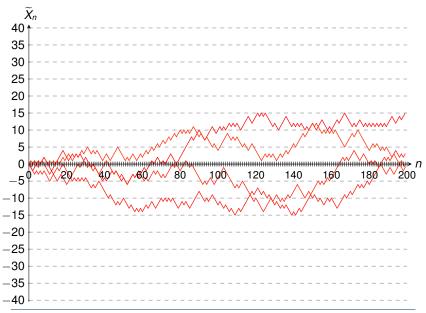
How does a "typical" realisation look like?

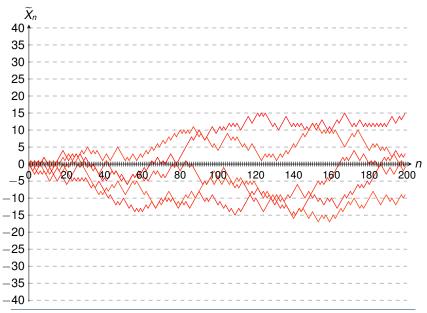


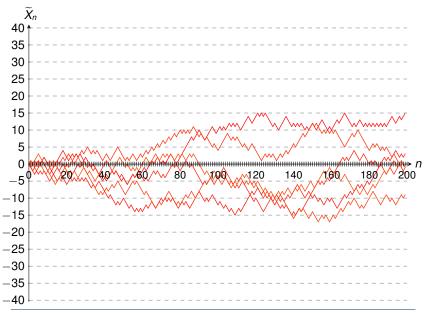


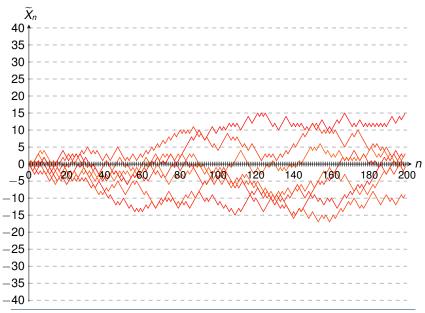


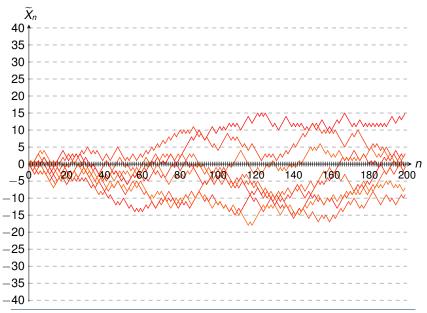


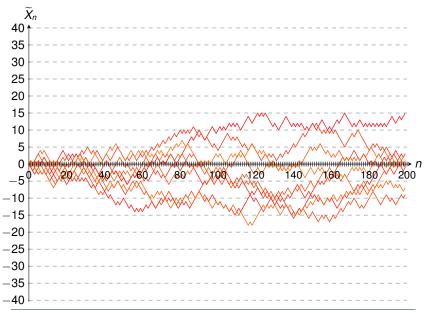


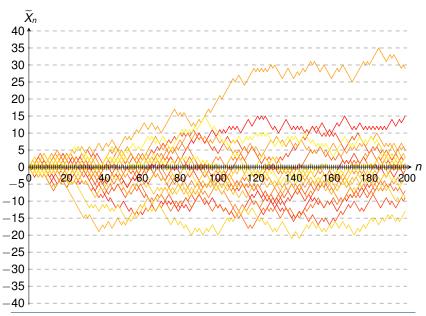


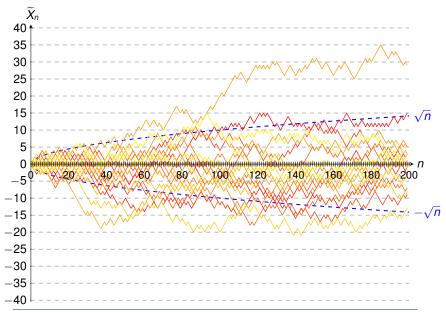


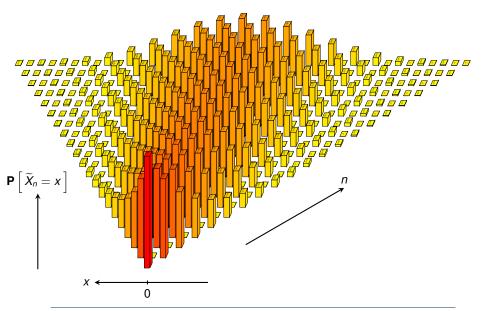


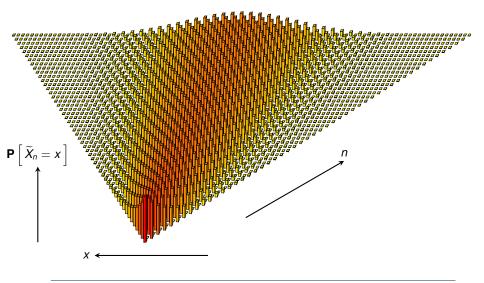


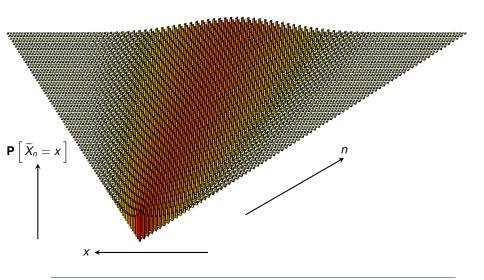


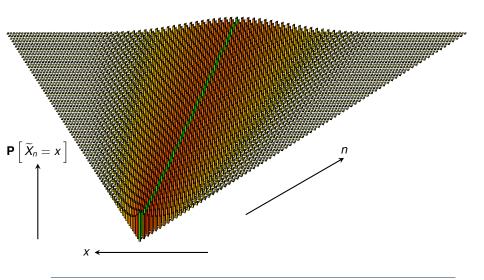




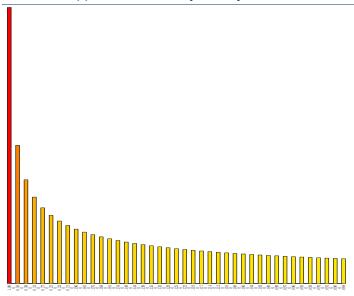








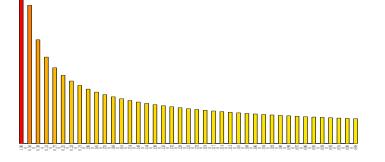
Interlude: Approximation of $P[\widetilde{X}_n = 0]$



Interlude: Approximation of $P[\widetilde{X}_n = 0]$

Exercise

Try to find an expression for $\mathbf{P}\left[\widetilde{X}_n=0\right]$. Using Stirling's approximation for n!, conclude that $\mathbf{P}\left[\widetilde{X}_n=0\right]=\Theta(1/\sqrt{n})$ for even integers n.



- Let X_i be independent random variables taking values $\in \{-1, +1\}$ with probability 1/2 each
- Consider $\widetilde{X}_n := \sum_{i=1}^n X_i$ for any for any $n = 0, 1, \dots, 200$

- Let X_i be independent random variables taking values $\in \{-1, +1\}$ with probability 1/2 each
- Consider $\widetilde{X}_n := \sum_{i=1}^n X_i$ for any for any $n = 0, 1, \dots, 200$

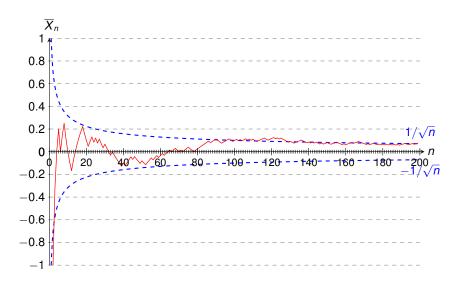
This does **not** converge!

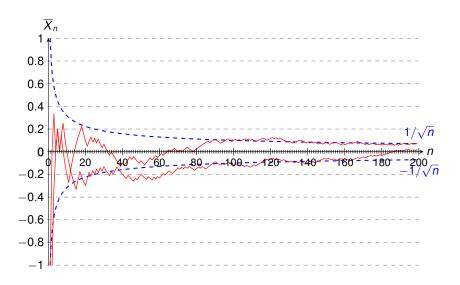
- Let X_i be independent random variables taking values $\in \{-1, +1\}$ with probability 1/2 each
- Consider $\widetilde{X}_n := \sum_{i=1}^n X_i$ for any for any $n = 0, 1, \dots, 200$

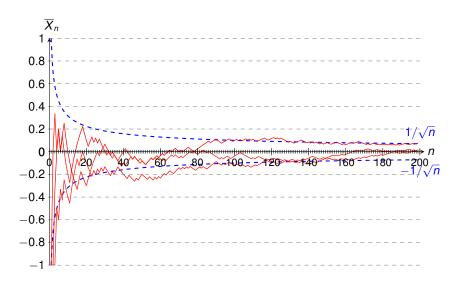
This does **not** converge!

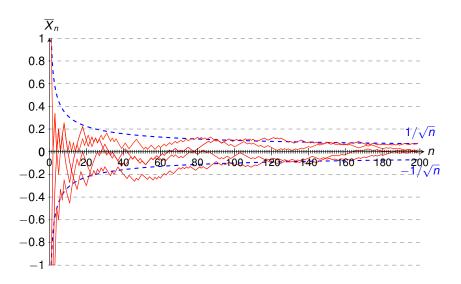
Consider now the average (sample mean): $\overline{X}_n := 1/n \cdot \sum_{i=1}^n X_i$.

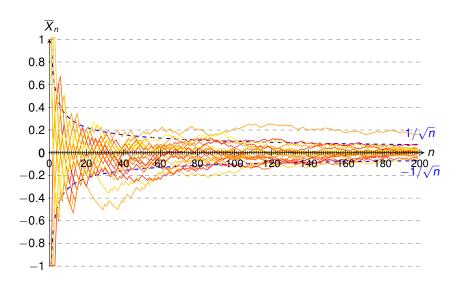












The Weak Law of Large Numbers -

Let $\overline{X}_n := 1/n \cdot \sum_{i=1}^n X_i$, where the X_i 's are i.i.d. with finite expectation μ and finite variance σ^2 . Then, for any $\epsilon > 0$,

$$\lim_{n\to\infty} \mathbf{P}\left[\,|\overline{X}_n-\mu|>\epsilon\,\right]=0$$

- Proof

The Weak Law of Large Numbers -

Let $\overline{X}_n := 1/n \cdot \sum_{i=1}^n X_i$, where the X_i 's are i.i.d. with finite expectation μ and finite variance σ^2 . Then, for any $\epsilon > 0$,

$$\lim_{n\to\infty} \mathbf{P}\left[\left|\overline{X}_n - \mu\right| > \epsilon\right] = 0$$

Proof

• Let
$$\overline{X}_n := 1/n \cdot \sum_{i=1}^n X_i$$

The Weak Law of Large Numbers

Let $\overline{X}_n := 1/n \cdot \sum_{i=1}^n X_i$, where the X_i 's are i.i.d. with finite expectation μ and finite variance σ^2 . Then, for any $\epsilon > 0$,

$$\lim_{n\to\infty} \mathbf{P}\left[\left|\overline{X}_n - \mu\right| > \epsilon\right] = 0$$

Proof

- Let $\overline{X}_n := 1/n \cdot \sum_{i=1}^n X_i$
- \bullet Then $\mathbf{E}\left\lceil \overline{X}_{n}\right\rceil =\mu$ and

$$\mathbf{V}\left[\overline{X}_{n}\right] = 1/n^{2} \cdot \mathbf{V}\left[\sum_{i=1}^{n} X_{i}\right] = 1/n^{2} \cdot \sum_{i=1}^{n} \mathbf{V}\left[X_{i}\right] = 1/n \cdot \sigma^{2}.$$

The Weak Law of Large Numbers

Let $\overline{X}_n := 1/n \cdot \sum_{i=1}^n X_i$, where the X_i 's are i.i.d. with finite expectation μ and finite variance σ^2 . Then, for any $\epsilon > 0$,

$$\lim_{n\to\infty} \mathbf{P}\left[\,|\overline{X}_n-\mu|>\epsilon\,\right]=0$$

Proof

- Let $\overline{X}_n := 1/n \cdot \sum_{i=1}^n X_i$
- lacksquare Then $\mathbf{E}\left[\overline{X}_{n}\right]=\mu$ and

$$\mathbf{V}\left[\overline{X}_{n}\right] = 1/n^{2} \cdot \mathbf{V}\left[\sum_{i=1}^{n} X_{i}\right] = 1/n^{2} \cdot \sum_{i=1}^{n} \mathbf{V}\left[X_{i}\right] = 1/n \cdot \sigma^{2}.$$

Applying Chebyshev's inequality yields:

$$\mathbf{P}\left[\left|\overline{X}_{n} - \mathbf{E}\left[\overline{X}_{n}\right]\right| > \epsilon\right] \leq \frac{1}{\epsilon^{2}} \cdot \mathbf{V}\left[\overline{X}_{n}\right]$$

The Weak Law of Large Numbers

Let $\overline{X}_n := 1/n \cdot \sum_{i=1}^n X_i$, where the X_i 's are i.i.d. with finite expectation μ and finite variance σ^2 . Then, for any $\epsilon > 0$,

$$\lim_{n\to\infty} \mathbf{P}\left[\,|\overline{X}_n-\mu|>\epsilon\,\right]=0$$

Proof

- Let $\overline{X}_n := 1/n \cdot \sum_{i=1}^n X_i$
- Then $\mathbf{E}\left[\overline{X}_{n}\right]=\mu$ and

$$\mathbf{V}\left[\overline{X}_{n}\right] = 1/n^{2} \cdot \mathbf{V}\left[\sum_{i=1}^{n} X_{i}\right] = 1/n^{2} \cdot \sum_{i=1}^{n} \mathbf{V}\left[X_{i}\right] = 1/n \cdot \sigma^{2}.$$

Applying Chebyshev's inequality yields:

$$\mathbf{P}\left[\left|\overline{X}_{n} - \mathbf{E}\left[\overline{X}_{n}\right]\right| > \epsilon\right] \leq \frac{1}{\epsilon^{2}} \cdot \mathbf{V}\left[\overline{X}_{n}\right] = \frac{\sigma^{2}}{n\epsilon^{2}}.$$

The Weak Law of Large Numbers

Let $\overline{X}_n := 1/n \cdot \sum_{i=1}^n X_i$, where the X_i 's are i.i.d. with finite expectation μ and finite variance σ^2 . Then, for any $\epsilon > 0$,

$$\lim_{n\to\infty} \mathbf{P}\left[\left|\overline{X}_n - \mu\right| > \epsilon\right] = 0$$

Proof

- Let $\overline{X}_n := 1/n \cdot \sum_{i=1}^n X_i$
- \bullet Then $\mathbf{E}\left[\,\overline{X}_{n}\,\right]=\mu$ and

$$\mathbf{V}\left[\overline{X}_{n}\right] = 1/n^{2} \cdot \mathbf{V}\left[\sum_{i=1}^{n} X_{i}\right] = 1/n^{2} \cdot \sum_{i=1}^{n} \mathbf{V}\left[X_{i}\right] = 1/n \cdot \sigma^{2}.$$

Applying Chebyshev's inequality yields:

$$\mathbf{P}\left[\left|\overline{X}_{n} - \mathbf{E}\left[\overline{X}_{n}\right]\right| > \epsilon\right] \leq \frac{1}{\epsilon^{2}} \cdot \mathbf{V}\left[\overline{X}_{n}\right] = \frac{\sigma^{2}}{n\epsilon^{2}}.$$

• For any (fixed) $\epsilon > 0$, the right hand side vanishes as $n \to \infty$.

The Weak Law of Large Numbers

Let $\overline{X}_n := 1/n \cdot \sum_{i=1}^n X_i$, where the X_i 's are i.i.d. with finite expectation μ and finite variance σ^2 . Then, for any $\epsilon > 0$,

$$\lim_{n\to\infty} \mathbf{P}\left[\,|\overline{X}_n - \mu| > \epsilon\,\right] = 0$$

Proof

- Let $\overline{X}_n := 1/n \cdot \sum_{i=1}^n X_i$
- \bullet Then $\mathbf{E}\left[\,\overline{X}_{n}\,\right]=\mu$ and

$$\mathbf{V}\left[\overline{X}_{n}\right] = 1/n^{2} \cdot \mathbf{V}\left[\sum_{i=1}^{n} X_{i}\right] = 1/n^{2} \cdot \sum_{i=1}^{n} \mathbf{V}\left[X_{i}\right] = 1/n \cdot \sigma^{2}.$$

Applying Chebyshev's inequality yields:

$$\mathbf{P}\left[\left|\overline{X}_{n} - \mathbf{E}\left[\overline{X}_{n}\right]\right| > \epsilon\right] \leq \frac{1}{\epsilon^{2}} \cdot \mathbf{V}\left[\overline{X}_{n}\right] = \frac{\sigma^{2}}{n\epsilon^{2}}.$$

• For any (fixed) $\epsilon > 0$, the right hand side vanishes as $n \to \infty$.

(Let $\epsilon > 0$, $\delta > 0$. Pick $N = \frac{\sigma^2}{\epsilon^2 \cdot \delta}$. Then for any $n \geq N$, the probability above is smaller than δ .)

Example 4 -

Suppose that, instead of the expectation μ , we want to estimate the probability of an event, e.g.,

$$p := \mathbf{P}[X \in (a, b]], \text{ where } a < b.$$

How can we use the Law of Large Numbers?

Answer

Example 4 -

Suppose that, instead of the expectation μ , we want to estimate the probability of an event, e.g.,

$$p := \mathbf{P} [X \in (a, b]], \text{ where } a < b.$$

How can we use the Law of Large Numbers?

nswer

• Let $X_1, X_2, \ldots, X_n \sim X$. For each $1 \leq i \leq n$, define:

$$Y_i = \begin{cases} 1 & \text{if } X_i \in (a, b], \\ 0 & \text{otherwise.} \end{cases}$$

Example 4 -

Suppose that, instead of the expectation μ , we want to estimate the probability of an event, e.g.,

$$p := \mathbf{P}[X \in (a, b]], \text{ where } a < b.$$

How can we use the Law of Large Numbers?

Answer

• Let $X_1, X_2, \ldots, X_n \sim X$. For each $1 \leq i \leq n$, define:

$$Y_i = \begin{cases} 1 & \text{if } X_i \in (a, b], \\ 0 & \text{otherwise.} \end{cases}$$

We have:

$$\mathbf{E}[Y_i] = \mathbf{P}[X_i \in (a, b]] \cdot 1 + \mathbf{P}[X_i \notin (a, b]] \cdot 0 = p.$$

Example 4 -

Suppose that, instead of the expectation μ , we want to estimate the probability of an event, e.g.,

$$p := \mathbf{P}[X \in (a, b]], \text{ where } a < b.$$

How can we use the Law of Large Numbers?

Inswer

■ Let $X_1, X_2, ..., X_n \sim X$. For each $1 \le i \le n$, define:

$$Y_i = \begin{cases} 1 & \text{if } X_i \in (a, b], \\ 0 & \text{otherwise.} \end{cases}$$

We have:

$$\mathbf{E}[Y_i] = \mathbf{P}[X_i \in (a, b]] \cdot 1 + \mathbf{P}[X_i \notin (a, b]] \cdot 0 = p.$$

• Similarly, **V** [Y_i] = p(1 - p)

Example 4

Suppose that, instead of the expectation μ , we want to estimate the probability of an event, e.g.,

$$p := \mathbf{P}[X \in (a, b]], \text{ where } a < b.$$

How can we use the Law of Large Numbers?

nswer

■ Let $X_1, X_2, ..., X_n \sim X$. For each $1 \le i \le n$, define:

$$Y_i = \begin{cases} 1 & \text{if } X_i \in (a, b], \\ 0 & \text{otherwise.} \end{cases}$$

We have:

$$\mathbf{E}[Y_i] = \mathbf{P}[X_i \in (a,b]] \cdot 1 + \mathbf{P}[X_i \notin (a,b]] \cdot 0 = p.$$

- Similarly, **V** [Y_i] = p(1-p)
- The random variables Y₁, Y₂,..., Y_n are i.i.d., so we can apply the Law of Large Numbers to Ȳ_n.

Appendix: Sum of Two Uniform R.V. (non-examinable)

Example -					
Let X and Y distributed on	be two inde [0, 1]. How do	pendent randes the probal	dom variab pility density	ples, both unity of $X + Y$ loo	niformly ok like?
			<i>p</i>	Answer —	

Appendix: Sum of Two Uniform R.V. (non-examinable)

Example

Let X and Y be two independent random variables, both uniformly distributed on [0,1]. How does the probability density of X+Y look like?

We have

$$f_{X+Y}(a) \stackrel{(\star)}{=} \int_{-\infty}^{+\infty} f_X(a-y) f_Y(y) dy,$$

where for (\star) , see Chapter 6.3 in Ross (Chapter 11.2 in Dekking et al.). Since $f_Y(y)=1$ if $0 \le y \le 1$ and $f_Y(y)=0$ otherwise, we have

$$f_{X+Y}(a) = \int_0^1 f_X(a-y) dy.$$

Further, for $0 \le a \le 1$ we have $f_X(a-y) = 1$ and $f_X(a-y) = 0$ otherwise, and thus

$$f_{X+Y}(a)=\int_0^a dy=a.$$

Similarly, for 1 < a < 2, $f_{X+Y}(a) = \int_a^2 dy = 2 - a$. Therefore,

$$f_{X+Y}(a) = \begin{cases} a & \text{if } 0 \le a \le 1, \\ 2-a & \text{if } 1 \le a \le 2, \\ 0 & \text{otherwise.} \end{cases}$$