Introduction to Probability

Lecture 12: Online Algorithms

Mateja Jamnik, Thomas Sauerwald

University of Cambridge, Department of Computer Science and Technology email: {mateja.jamnik,thomas.sauerwald}@cl.cam.ac.uk

Faster 2025

Outline

Stopping Problem 1: Dice Game

Stopping Problem 2: The Secretary Problem

A Generalisation: The Odds Algorithm (non-examinable)

The End...

Dice Game —

Dice Game -

• We throw a fair, six-sided dice *n* times

Dice Game ----

- We throw a fair, six-sided dice n times
- After each throw, you can either STOP or CONTINUE
- You win if you STOP at the last 6 within the n throws

Dice Game —

- We throw a fair, six-sided dice n times
- After each throw, you can either STOP or CONTINUE
- You win if you STOP at the last 6 within the n throws

Dice Game -

- We throw a fair, six-sided dice n times
- After each throw, you can either STOP or CONTINUE
- You win if you STOP at the last 6 within the n throws

$$-3, 5, 6, 4, 2, \underbrace{3}_{\text{STIP}}, 1, 2, 6, 5$$

Dice Game ——

- We throw a fair, six-sided dice n times
- After each throw, you can either STOP or CONTINUE
- You win if you STOP at the last 6 within the n throws

■
$$3, 5, 6, 4, 2, \underbrace{3}_{\text{STOP}}, 1, 2, 6, 5 \Rightarrow \text{LOSE!}$$

Dice Game ——

- We throw a fair, six-sided dice n times
- After each throw, you can either STOP or CONTINUE
- You win if you STOP at the last 6 within the n throws

■
$$3, 5, 6, 4, 2, \underbrace{3}_{\text{STOP}}, 1, 2, 6, 5 \Rightarrow \text{LOSE!}$$

$$-3,5,\underline{6},4,2,3,1,2,6,5$$

Dice Game

- We throw a fair, six-sided dice n times
- After each throw, you can either STOP or CONTINUE
- You win if you STOP at the last 6 within the n throws

■
$$3, 5, 6, 4, 2, \underbrace{3}_{\text{STOP}}, 1, 2, 6, 5 \Rightarrow \text{LOSE!}$$

■
$$3, 5, \underbrace{6}_{STOP}, 4, 2, 3, 1, 2, 6, 5 \Rightarrow LOSE!$$

$$3, 5, 6, 4, 2, 3, 1, 2, \underbrace{6}_{\text{STOP}}, 5$$

Dice Game

- We throw a fair, six-sided dice n times
- After each throw, you can either STOP or CONTINUE
- You win if you STOP at the last 6 within the n throws

■
$$3, 5, 6, 4, 2, \underbrace{3}_{\text{STOP}}, 1, 2, 6, 5 \Rightarrow \text{LOSE!}$$

■
$$3, 5, \underbrace{6}_{\text{STIRE}}, 4, 2, 3, 1, 2, 6, 5 \Rightarrow \text{LOSE!}$$

■ 3, 5,
$$\frac{6}{5}$$
, 4, 2, 3, 1, 2, $\frac{6}{5}$, 5 \Rightarrow WIN!

Dice Game

- We throw a fair, six-sided dice n times
- After each throw, you can either STOP or CONTINUE
- You win if you STOP at the last 6 within the n throws

What is the optimal strategy for maximising the probability of winning?

■
$$3, 5, 6, 4, 2, \underbrace{3}_{\text{STOP}}, 1, 2, 6, 5 \Rightarrow \text{LOSE!}$$

■
$$3, 5, \underbrace{6}_{STOP}, 4, 2, 3, 1, 2, 6, 5 \Rightarrow LOSE!$$

■
$$3, 5, 6, 4, 2, 3, 1, 2, \underbrace{6}_{\text{STOP}}, 5 \Rightarrow \text{WIN!}$$

Dice Game

- We throw a fair, six-sided dice n times
- After each throw, you can either STOP or CONTINUE
- You win if you STOP at the last 6 within the n throws

What is the optimal strategy for maximising the probability of winning?

Example (n = 10)

■
$$3, 5, 6, 4, 2, \underbrace{3}_{\text{STOP}}, 1, 2, 6, 5 \Rightarrow \text{LOSE!}$$

This boils down to finding a threshold from which we STOP as soon as a 6 is thrown.

■ 3,5,
$$\underbrace{6}_{\text{STOP}}$$
, 4,2,3,1,2,6,5 \Rightarrow LOSE!

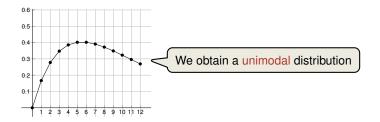
■ 3, 5,
$$\frac{6}{6}$$
, 4, 2, 3, 1, 2, $\frac{6}{\text{STOP}}$, 5 \Rightarrow WIN!

 \mathbf{P} [obtain exactly one 6 in last k throws] =

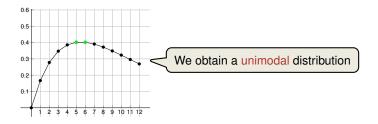
P[obtain exactly one 6 in last
$$k$$
 throws] = $\binom{k}{1} \cdot \frac{1}{6} \cdot \left(\frac{5}{6}\right)^{k-1}$

P[obtain exactly one 6 in last
$$k$$
 throws] = $\binom{k}{1} \cdot \frac{1}{6} \cdot \left(\frac{5}{6}\right)^{k-1} = \frac{k}{6} \cdot \left(\frac{5}{6}\right)^{k-1}$

P [obtain exactly one 6 in last
$$k$$
 throws] = $\binom{k}{1} \cdot \frac{1}{6} \cdot \left(\frac{5}{6}\right)^{k-1} = \frac{k}{6} \cdot \left(\frac{5}{6}\right)^{k-1}$

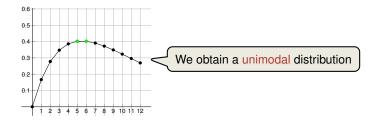


P [obtain exactly one 6 in last
$$k$$
 throws] = $\binom{k}{1} \cdot \frac{1}{6} \cdot \left(\frac{5}{6}\right)^{k-1} = \frac{k}{6} \cdot \left(\frac{5}{6}\right)^{k-1}$



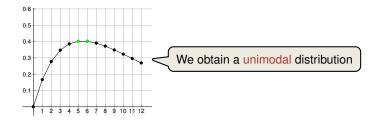
• This is maximised for k = 6 (or k = 5)

P[obtain exactly one 6 in last
$$k$$
 throws] = $\binom{k}{1} \cdot \frac{1}{6} \cdot \left(\frac{5}{6}\right)^{k-1} = \frac{k}{6} \cdot \left(\frac{5}{6}\right)^{k-1}$



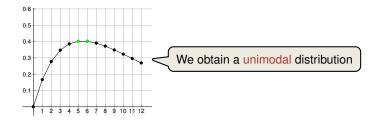
■ This is maximised for k = 6 (or k = 5) \Rightarrow best strategy: wait until we have 6 (5) throws left, and then STOP at the first 6

P[obtain exactly one 6 in last
$$k$$
 throws] = $\binom{k}{1} \cdot \frac{1}{6} \cdot \left(\frac{5}{6}\right)^{k-1} = \frac{k}{6} \cdot \left(\frac{5}{6}\right)^{k-1}$



- This is maximised for k = 6 (or k = 5) \Rightarrow best strategy: wait until we have 6 (5) throws left, and then STOP at the first 6
- Probability of success is:

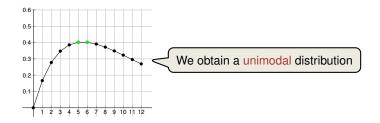
P[obtain exactly one 6 in last
$$k$$
 throws] = $\binom{k}{1} \cdot \frac{1}{6} \cdot \left(\frac{5}{6}\right)^{k-1} = \frac{k}{6} \cdot \left(\frac{5}{6}\right)^{k-1}$



- This is maximised for k = 6 (or k = 5) \Rightarrow best strategy: wait until we have 6 (5) throws left, and then STOP at the first 6
- Probability of success is:

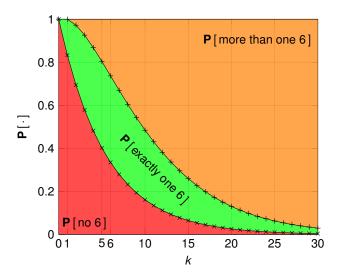
$$\left(\frac{5}{6}\right)^5$$

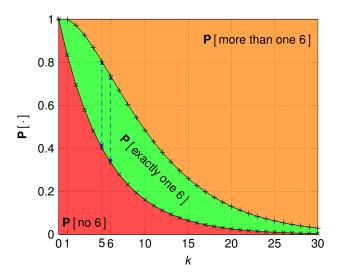
P[obtain exactly one 6 in last
$$k$$
 throws] = $\binom{k}{1} \cdot \frac{1}{6} \cdot \left(\frac{5}{6}\right)^{k-1} = \frac{k}{6} \cdot \left(\frac{5}{6}\right)^{k-1}$



- This is maximised for k = 6 (or k = 5) \Rightarrow best strategy: wait until we have 6 (5) throws left, and then STOP at the first 6
- Probability of success is:

$$\left(\frac{5}{6}\right)^5 \approx 0.40$$





Outline

Stopping Problem 1: Dice Game

Stopping Problem 2: The Secretary Problem

A Generalisation: The Odds Algorithm (non-examinable)

The End...

The Problem -

 We are interviewing n candidates for one job in a sequential, random order

The Problem -

- We are interviewing n candidates for one job in a sequential, random order
- A candidate must be accepted (STOP) or rejected immediately after the interview and cannot be recalled

- The Problem -

- We are interviewing n candidates for one job in a sequential, random order
- A candidate must be accepted (STOP) or rejected immediately after the interview and cannot be recalled
- Goal: maximise the probability of hiring the best candidate

The Problem

- We are interviewing n candidates for one job in a sequential, random order
- A candidate must be accepted (STOP) or rejected immediately after the interview and cannot be recalled
- Goal: maximise the probability of hiring the best candidate

also known as marriage problem (Kepler 1613), hiring problem or best choice problem.

The Problem

- We are interviewing n candidates for one job in a sequential, random order
- A candidate must be accepted (STOP) or rejected immediately after the interview and cannot be recalled
- Goal: maximise the probability of hiring the best candidate

also known as marriage problem (Kepler 1613), hiring problem or best choice problem.

Further Remarks —

The Problem

- We are interviewing n candidates for one job in a sequential, random order
- A candidate must be accepted (STOP) or rejected immediately after the interview and cannot be recalled
- Goal: maximise the probability of hiring the best candidate

also known as marriage problem (Kepler 1613), hiring problem or best choice problem.

Further Remarks -

 After seeing candidate i, we only know the relative order among the first i candidates.

The Problem

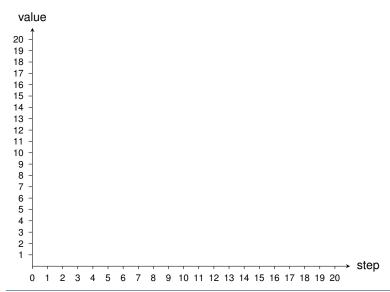
- We are interviewing n candidates for one job in a sequential, random order
- A candidate must be accepted (STOP) or rejected immediately after the interview and cannot be recalled
- Goal: maximise the probability of hiring the best candidate

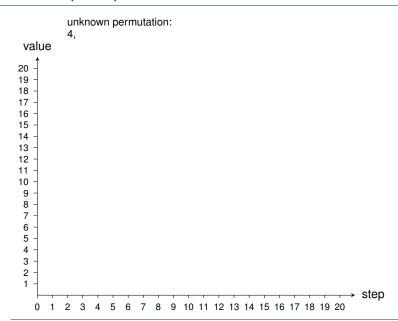
also known as marriage problem (Kepler 1613), hiring problem or best choice problem.

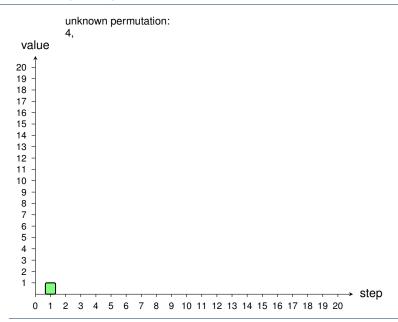
Further Remarks -

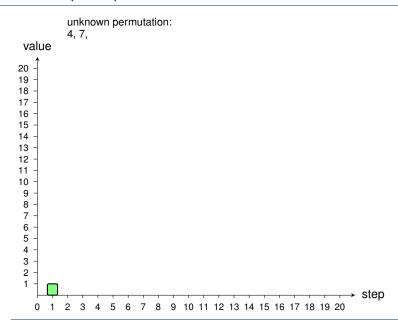
- After seeing candidate i, we only know the relative order among the first i candidates.
- \Rightarrow For our problem we may as well assume that the only information we have when interviewing candidate i is whether that candidate is best among $\{1, \ldots, i\}$ or not.

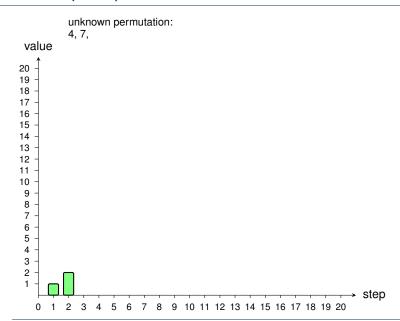
unknown permutation:

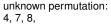


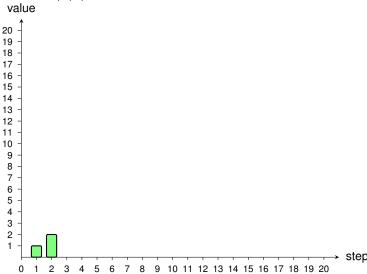




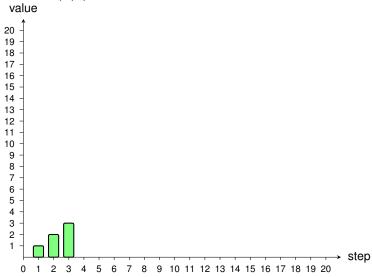


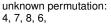


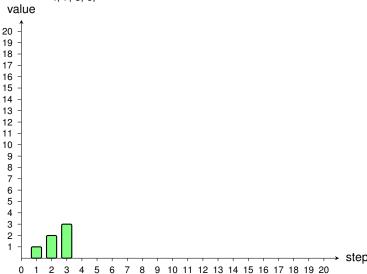


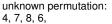


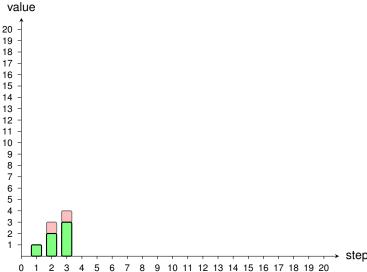
unknown permutation: 4, 7, 8,

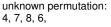


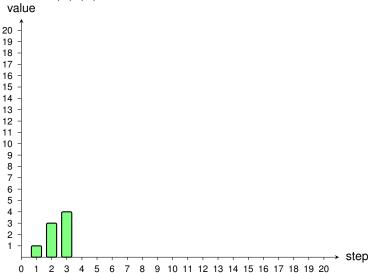


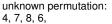


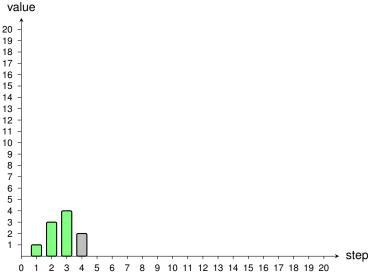


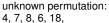


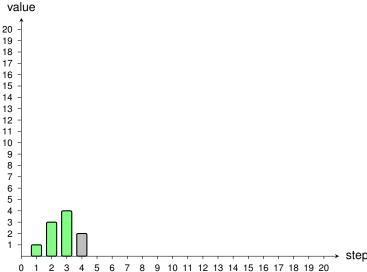


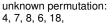


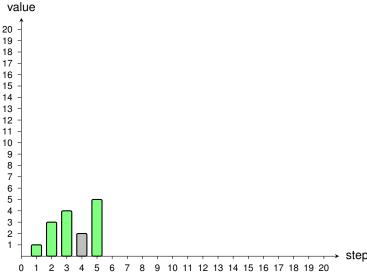


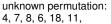


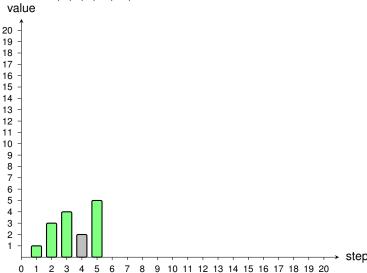




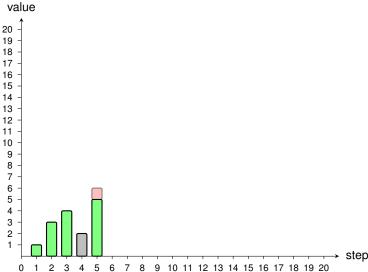


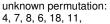


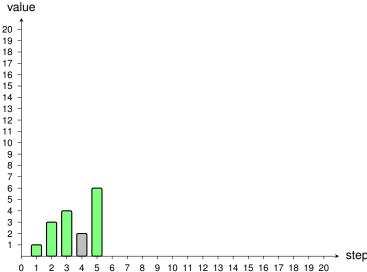


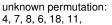


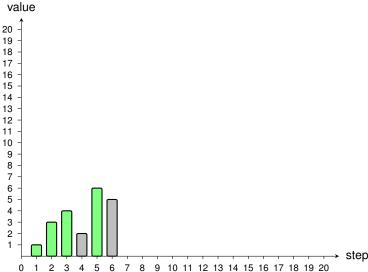


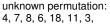


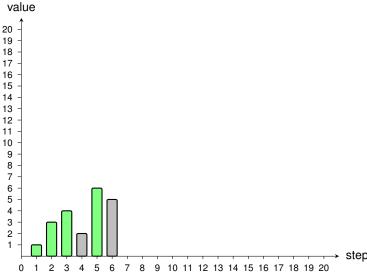


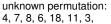


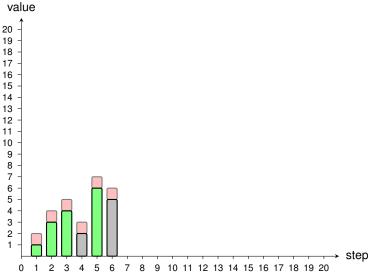


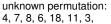


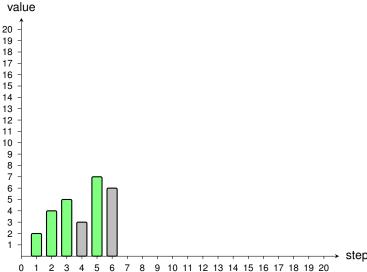


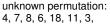


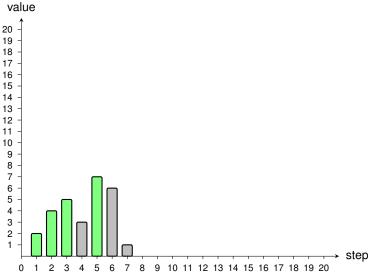


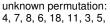


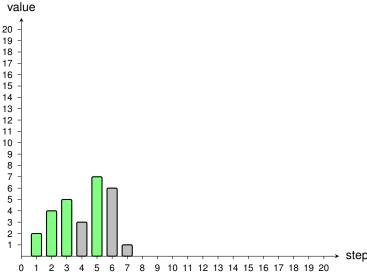


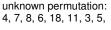


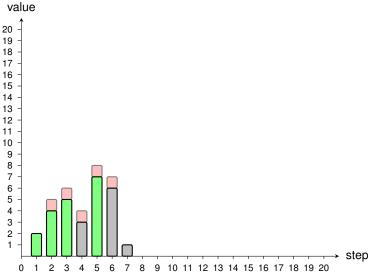


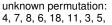


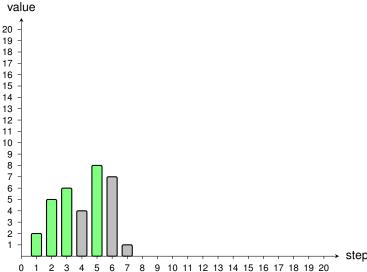


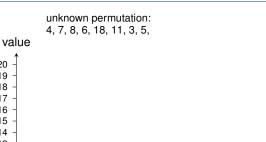










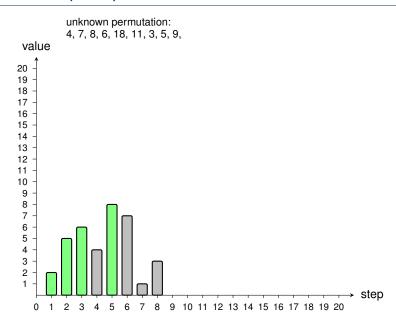


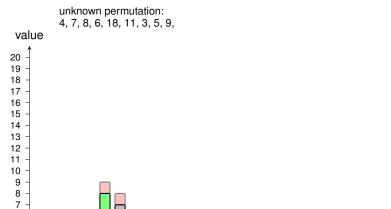
2 3

5 6

8 9

10 11 12 13 14 15 16 17 18 19 20



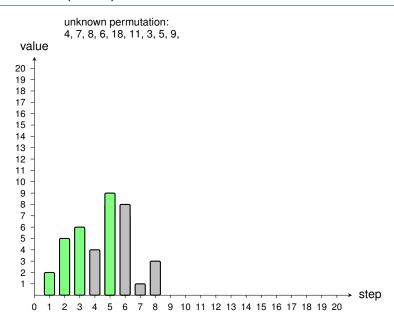


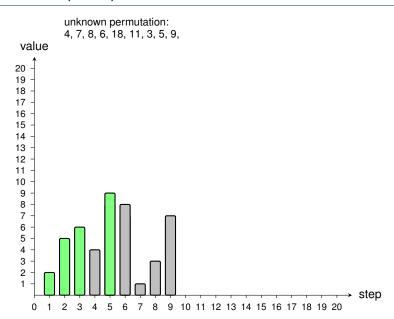
2 3

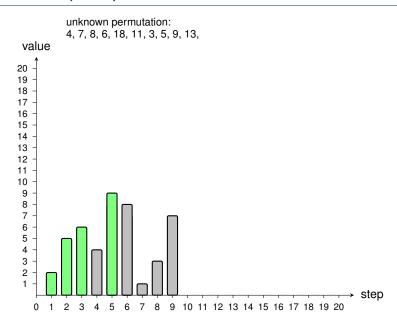
5 6

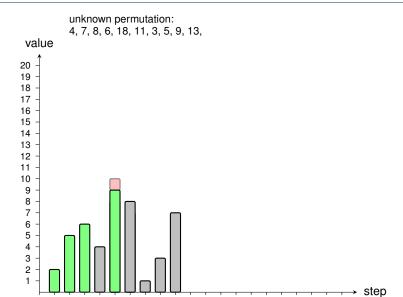
8 9

10 11 12 13 14 15 16 17 18 19 20







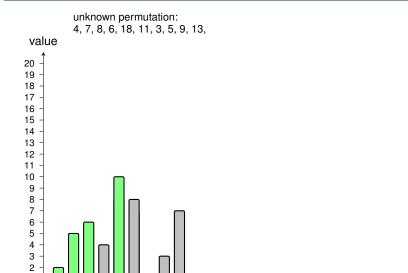


2 3

5 6

8 9

10 11 12 13 14 15 16 17 18 19 20

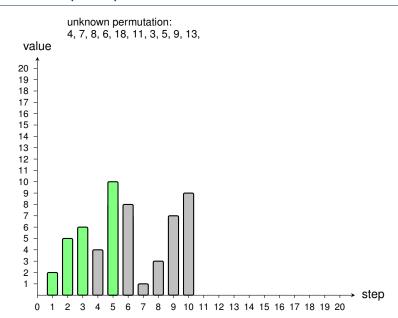


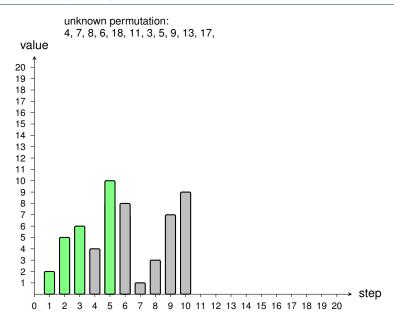
2 3

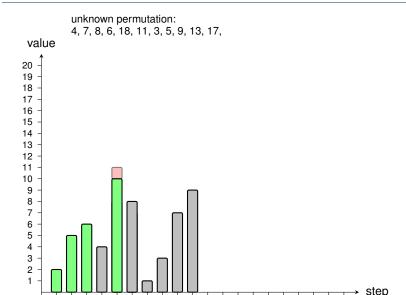
5 6

8 9

10 11 12 13 14 15 16 17 18 19 20





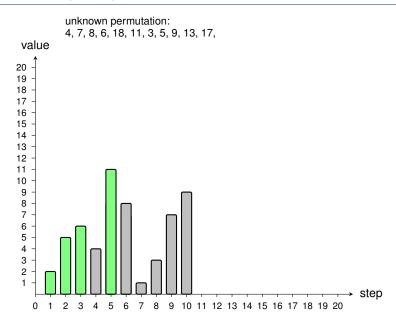


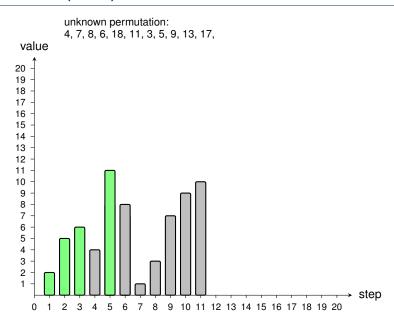
2 3

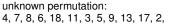
5 6

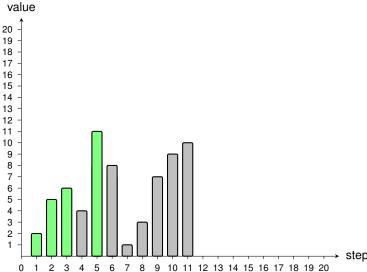
8 9

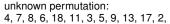
10 11 12 13 14 15 16 17 18 19 20

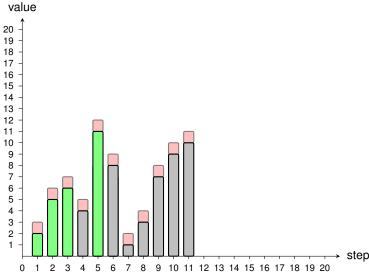


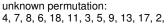


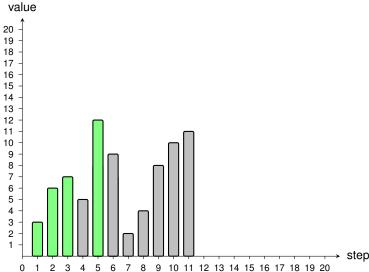


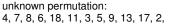


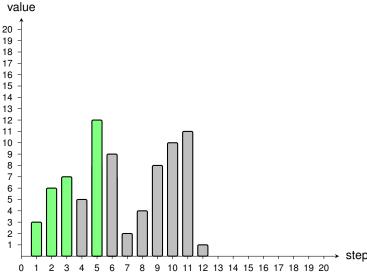


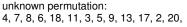


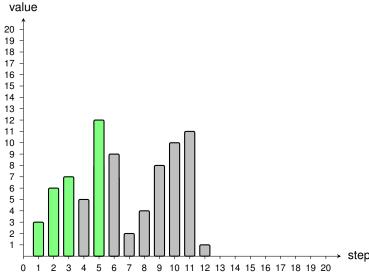


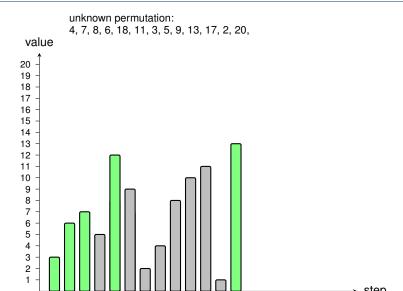










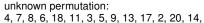


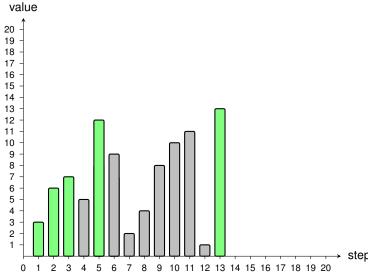
2 3

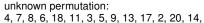
5 6

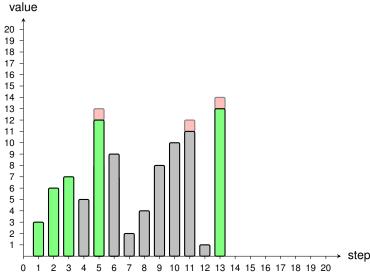
8 9

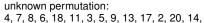
10 11 12 13 14 15 16 17 18 19 20

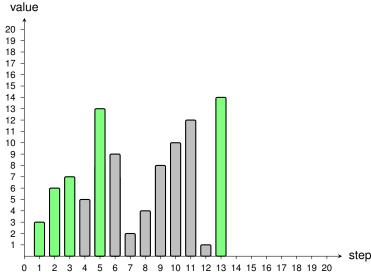


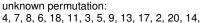


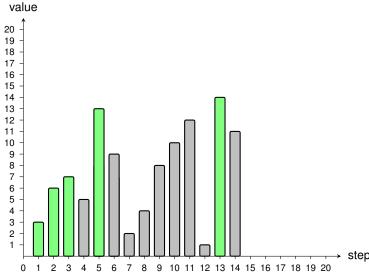


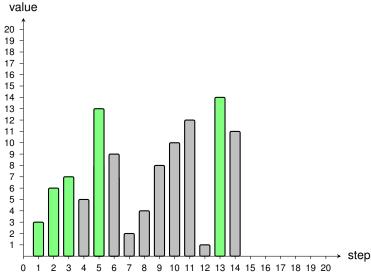


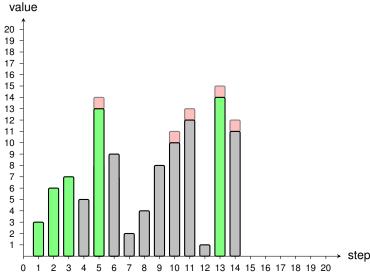


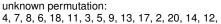


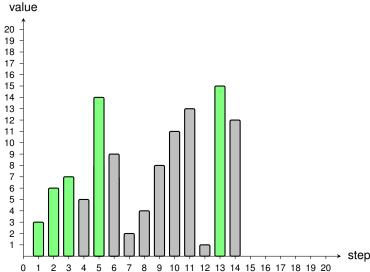


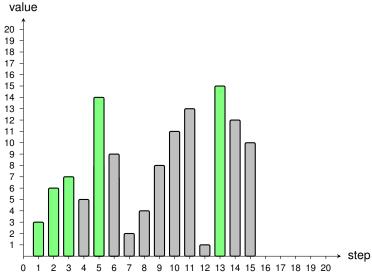


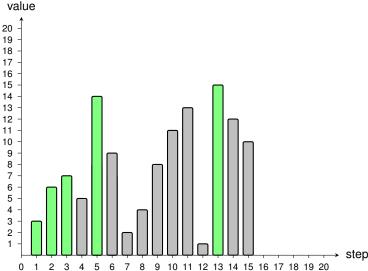


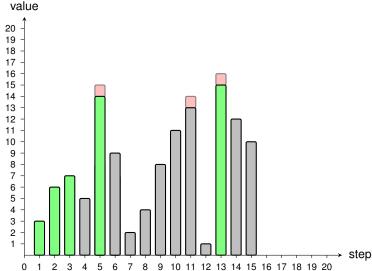


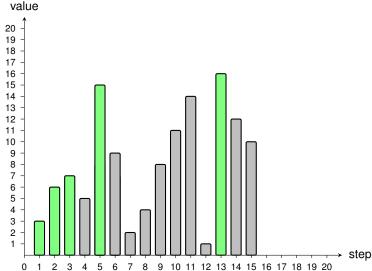


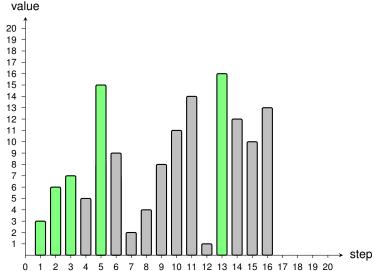


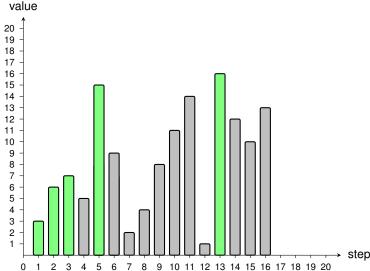


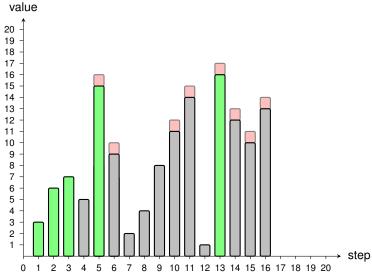


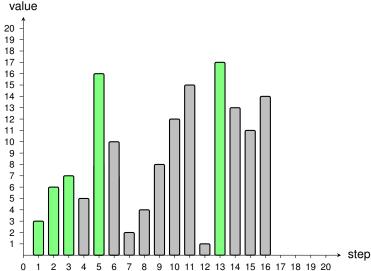


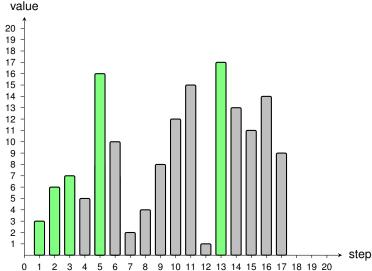


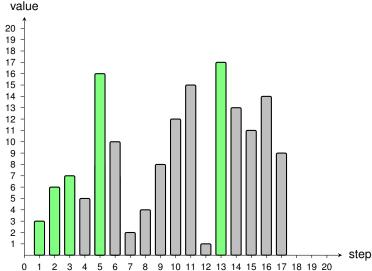


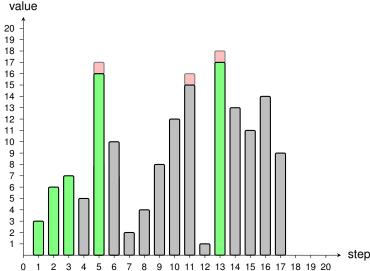


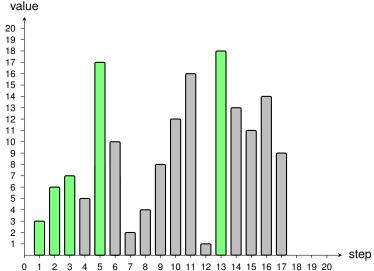


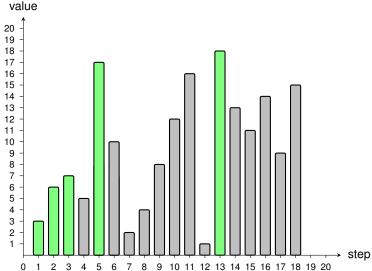


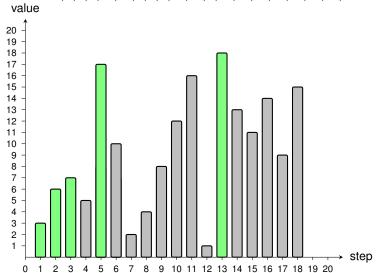


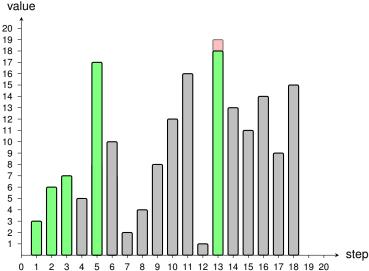


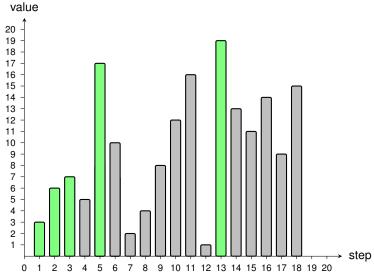


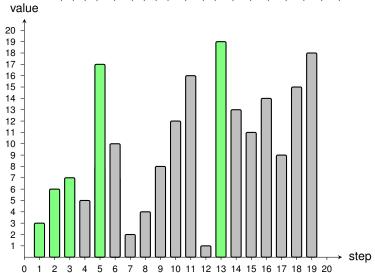


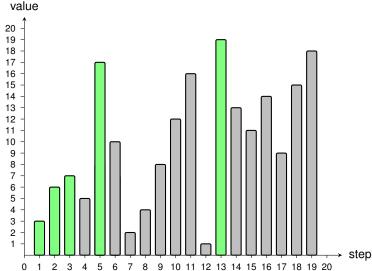


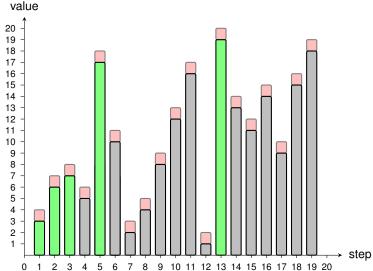


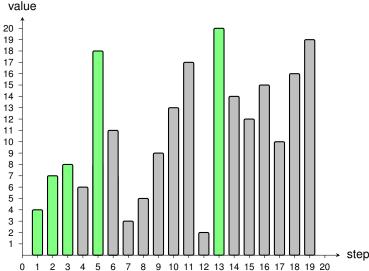


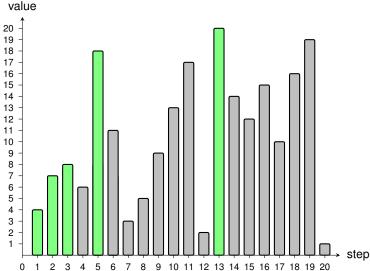


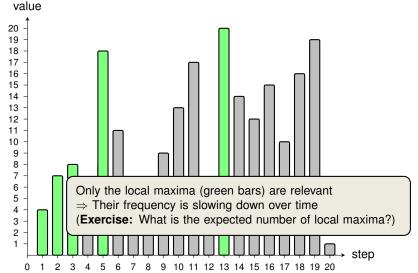












—— Naive Approach ——		

Naive Approach ————

Always pick the first (or any other) candidate

Naive Approach _____

- Always pick the first (or any other) candidate
- Probability for success is:

P[hire best candidate]

Naive Approach _____

- Always pick the first (or any other) candidate
- Probability for success is:

P[hire best candidate] =
$$\frac{1}{n}$$
.

Naive Approach _____

- Always pick the first (or any other) candidate
- Probability for success is:

P[hire best candidate] =
$$\frac{1}{n}$$
.

Smarter Approach ——

Naive Approach ————

- Always pick the first (or any other) candidate
- Probability for success is:

P[hire best candidate] =
$$\frac{1}{n}$$
.

Smarter Approach ———

• Reject the first n/2 candidates, then take the first candidate that is better than the first n/2

Naive Approach ———

- Always pick the first (or any other) candidate
- Probability for success is:

P[hire best candidate] =
$$\frac{1}{n}$$
.

Smarter Approach -

• Reject the first n/2 candidates, then take the first candidate that is better than the first n/2 (if none is taken before, take last candidate)

Naive Approach ——

- Always pick the first (or any other) candidate
- Probability for success is:

P[hire best candidate] =
$$\frac{1}{n}$$
.

A typical exploration-exploitation based strategy.

Smarter Approach -

• Reject the first n/2 candidates, then take the first candidate that is better than the first n/2 (if none is taken before, take last candidate)

Naive Approach -

- Always pick the first (or any other) candidate
- Probability for success is:

P[hire best candidate] =
$$\frac{1}{n}$$
.

A typical exploration-exploitation based strategy.

Smarter Approach -

 Reject the first n/2 candidates, then take the first candidate that is better than the first n/2 (if none is taken before, take last candidate)

How good is this approach?

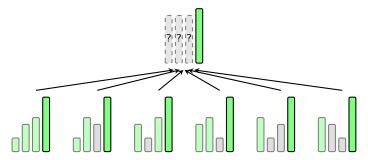
Analysis of the Refined Approach

Example 1	
	ound on the success probability of the refined approach
	st candidate better than the first $n/2$).
	Answer —

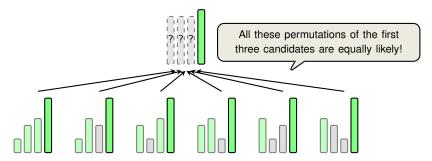
 Observation 1: At interview i, it only matters if current candidate is best so far (i.e., no benefit in counting how many "best-so-far" candidates we had).

• Observation 1: At interview *i*, it only matters if current candidate is best so far (i.e., no benefit in counting how many "best-so-far" candidates we had).

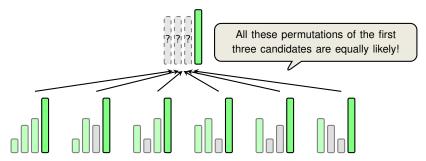
 Observation 1: At interview i, it only matters if current candidate is best so far (i.e., no benefit in counting how many "best-so-far" candidates we had).



 Observation 1: At interview i, it only matters if current candidate is best so far (i.e., no benefit in counting how many "best-so-far" candidates we had).

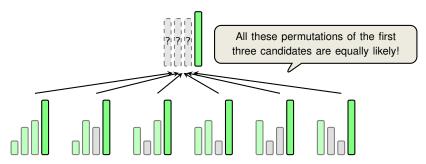


 Observation 1: At interview i, it only matters if current candidate is best so far (i.e., no benefit in counting how many "best-so-far" candidates we had).



• Observation 2: If at interview i, the best strategy is to accept the candidate (if it is "best-so-far"), then the same holds for interview i + 1

 Observation 1: At interview i, it only matters if current candidate is best so far (i.e., no benefit in counting how many "best-so-far" candidates we had).

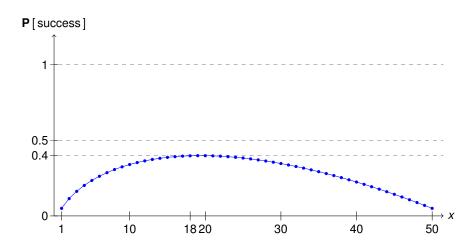


- Observation 2: If at interview i, the best strategy is to accept the candidate (if it is "best-so-far"), then the same holds for interview i + 1
 - Optimal Strategy
 - Explore but reject the first x 1 candidates
 - Accept first candidate $i \ge x$ which is better than all candidates before

Example 2 Find x which maximises the probability of hiring the best candidate.

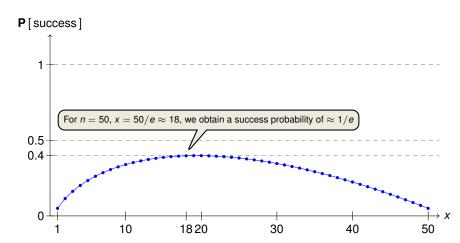
Probability for Success (Illustration)

Suppose n = 50:



Probability for Success (Illustration)

Suppose n = 50:



Another Variant of the Secretary Problem

- "The Postdoc Variant of the Secretary Problem" (Vanderbei'80) =
- same setup as in the secretary problem before
- difference: we want to pick the second-best ("the best [postdoc] is going to Harvard")
- Success probability of the optimal strategy is:

$$\frac{0.25n^2}{n(n-1)} \quad \stackrel{n\to\infty}{\longrightarrow} \quad \frac{1}{4}$$

Thus it is easier to pick the best than the second-best(!)

Outline

Stopping Problem 1: Dice Game

Stopping Problem 2: The Secretary Problem

A Generalisation: The Odds Algorithm (non-examinable)

The End...

• Let I_1, I_2, \dots, I_n be a sequence of independent indicators and let $p_j = \mathbf{E}[I_j]$

- Let l_1, l_2, \ldots, l_n be a sequence of independent indicators and let $p_i = \mathbf{E}[l_i]$
- Let $r_j := \frac{\rho_j}{1-\rho_j}$ (the odds) and $\rho_j \in (0,1)$ for all $j=1,2,\ldots,n$

- Let I_1, I_2, \dots, I_n be a sequence of independent indicators and let $p_j = \mathbf{E}[I_j]$
- Let $r_j := \frac{p_j}{1-p_i}$ (the odds) and $p_j \in (0,1)$ for all $j=1,2,\ldots,n$

Example 3

What is the probability that after trial k, there is exactly one success?

Answer

- Let I_1, I_2, \dots, I_n be a sequence of independent indicators and let $p_j = \mathbf{E}[I_j]$
- Let $r_j := \frac{p_j}{1-p_i}$ (the odds) and $p_j \in (0,1)$ for all $j=1,2,\ldots,n$

Example 3

What is the probability that after trial k, there is exactly one success?

$$\mathbf{P}\left[\sum_{j=k}^{n}I_{j}=1\right]$$

- Let I_1, I_2, \dots, I_n be a sequence of independent indicators and let $p_j = \mathbf{E}[I_j]$
- Let $r_j := \frac{p_j}{1-p_i}$ (the odds) and $p_j \in (0,1)$ for all $j=1,2,\ldots,n$

Example 3

What is the probability that after trial k, there is exactly one success?

$$\mathbf{P}\left[\sum_{j=k}^{n}I_{j}=1\right]=\sum_{j=k}^{n}p_{j}\cdot\prod_{k\leq j\leq n,j\neq i}^{n}(1-p_{i})$$

- Let I_1, I_2, \dots, I_n be a sequence of independent indicators and let $p_j = \mathbf{E}[I_j]$
- Let $r_j := \frac{p_j}{1-p_i}$ (the odds) and $p_j \in (0,1)$ for all $j=1,2,\ldots,n$

Example 3

What is the probability that after trial k, there is exactly one success?

$$\mathbf{P}\left[\sum_{j=k}^{n} I_{j} = 1\right] = \sum_{j=k}^{n} p_{j} \cdot \prod_{k \leq j \leq n, j \neq i}^{n} (1 - p_{i}) = \sum_{j=k}^{n} r_{j} \cdot \left(\prod_{i=k}^{n} (1 - p_{i})\right)$$

- Let I_1, I_2, \dots, I_n be a sequence of independent indicators and let $p_j = \mathbf{E}[I_j]$
- Let $r_j := \frac{p_j}{1-p_i}$ (the odds) and $p_j \in (0,1)$ for all $j=1,2,\ldots,n$

Example 3

What is the probability that after trial k, there is exactly one success?

$$\mathbf{P}\left[\sum_{j=k}^{n} I_{j} = 1\right] = \sum_{j=k}^{n} p_{j} \cdot \prod_{k \leq j \leq n, j \neq i}^{n} (1 - p_{i}) = \sum_{j=k}^{n} r_{j} \cdot \left(\prod_{i=k}^{n} (1 - p_{i})\right)$$

• One can prove that $\mathbf{P}\left[\sum_{j=k}^{n}I_{j}=1\right]$ is unimodal in $k\Rightarrow$ there is an ideal point from which on we should STOP at the first success!

- Let I_1, I_2, \ldots, I_n be a sequence of independent indicators and let $p_i = \mathbf{E}[I_i]$
- Let $r_j := \frac{p_j}{1-p_i}$ (the odds) and $p_j \in (0,1)$ for all $j = 1,2,\ldots,n$

Example 3

What is the probability that after trial k, there is exactly one success?

$$\mathbf{P}\left[\sum_{j=k}^{n} I_{j} = 1\right] = \sum_{j=k}^{n} p_{j} \cdot \prod_{k \leq j \leq n, j \neq i}^{n} (1 - p_{i}) = \sum_{j=k}^{n} r_{j} \cdot \left(\prod_{i=k}^{n} (1 - p_{i})\right)$$

• One can prove that $\mathbf{P}\left[\sum_{j=k}^{n}I_{j}=1\right]$ is unimodal in $k\Rightarrow$ there is an ideal point from which on we should STOP at the first success!

Odds Algorithm ("Sum the Odds to One and Stop", F. Thomas Bruss, 2000)

- 1. Let k^* be the largest k such that $\sum_{j=k}^n r_j \ge 1$ 2. Ignore everything before the k^* -th trial, then STOP at the first success.

- Let I_1, I_2, \ldots, I_n be a sequence of independent indicators and let $p_i = \mathbf{E}[I_i]$
- Let $r_j := \frac{p_j}{1-p_i}$ (the odds) and $p_j \in (0,1)$ for all $j = 1,2,\ldots,n$

Example 3

What is the probability that after trial k, there is exactly one success?

$$\mathbf{P}\left[\sum_{j=k}^{n} I_{j} = 1\right] = \sum_{j=k}^{n} p_{j} \cdot \prod_{k \leq j \leq n, j \neq i}^{n} (1 - p_{i}) = \sum_{j=k}^{n} r_{j} \cdot \left(\prod_{i=k}^{n} (1 - p_{i})\right)$$

• One can prove that $\mathbf{P}\left[\sum_{j=k}^{n}I_{j}=1\right]$ is unimodal in $k\Rightarrow$ there is an ideal point from which on we should STOP at the first success!

Odds Algorithm ("Sum the Odds to One and Stop", F. Thomas Bruss, 2000)

- 1. Let k^* be the largest k such that $\sum_{j=k}^n r_j \ge 1$ 2. Ignore everything before the k^* -th trial, then STOP at the first success.
 - The success probability is $\sum_{i=k^*}^n r_i \cdot (\prod_{i=k^*}^n (1-p_i))$.

- Let I_1, I_2, \ldots, I_n be a sequence of independent indicators and let $p_i = \mathbf{E}[I_i]$
- Let $r_j := \frac{p_j}{1-p_i}$ (the odds) and $p_j \in (0,1)$ for all $j = 1,2,\ldots,n$

Example 3

What is the probability that after trial k, there is exactly one success?

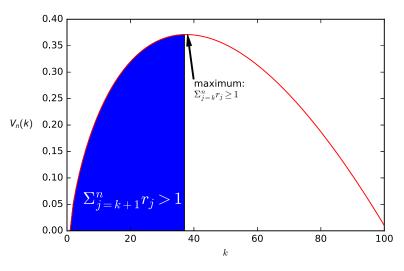
$$\mathbf{P}\left[\sum_{j=k}^{n} I_{j} = 1\right] = \sum_{j=k}^{n} p_{j} \cdot \prod_{k \leq j \leq n, j \neq i}^{n} (1 - p_{i}) = \sum_{j=k}^{n} r_{j} \cdot \left(\prod_{i=k}^{n} (1 - p_{i})\right)$$

• One can prove that $P\left[\sum_{j=k}^{n} I_{j} = 1\right]$ is unimodal in $k \Rightarrow$ there is an ideal point from which on we should STOP at the first success!

Odds Algorithm ("Sum the Odds to One and Stop", F. Thomas Bruss, 2000)

- 1. Let k^* be the largest k such that $\sum_{j=k}^n r_j \ge 1$ 2. Ignore everything before the k^* -th trial, then STOP at the first success.
 - The success probability is $\sum_{j=k^*}^n r_j \cdot (\prod_{i=k^*}^n (1-p_i))$.
 - This algorithm always executes the optimal strategy!

Illustration of the probability of having the last success (n = 100)



Source: Group Fibonado

Example 4 Use the Odds Algorithm to analyse the Secretary Problem.

Outline

Stopping Problem 1: Dice Game

Stopping Problem 2: The Secretary Problem

A Generalisation: The Odds Algorithm (non-examinable)

The End...

List of Lectures

Part I: Introduction to Probability

Lecture 1: Conditional probabilities and Bayes' theorem

Part II: Random Variables

- Lecture 2: Random variables, probability mass function, expectation
- Lecture 3: Expectation properties, variance, discrete distributions
- Lecture 4: More discrete distributions: Poisson, Geometric, Negative Binomial
- Lecture 5: Continuous random variables
- Lecture 6: Marginals and Joint Distributions
- Lecture 7: Independence, Covariance and Correlation

Part III: Moments and Limit Theorems

- Lecture 8: Basic Inequalities and Law of Large Numbers
- Lecture 9: Central Limit Theorem

Part IV: Applications and Statistics

- Lecture 10: Estimators (Part I)
- Lecture 11: Estimators (Part II)
- Lecture 12: Online Algorithms

Intro to Probability The End... 20

List of Distributions

Very Important:

- Bernoulli, Binomial, Poisson
- (Continuous) Uniform, Normal, Exponential

(Somewhat Less) Important:

Geometric, Negative Binomial, Hypergeometric, Discrete Uniform

Not used or not defined in this course (and thus not examinable):

- Cauchy, Gamma, bivariate Normal
- Beta

Thank you and Best Wishes for the Exam!