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Dice Game

= We throw a fair, six-sided dice n times
= After each throw, you can either STOP or CONTINUE
= You win if you STOP at the last 6 within the n throws

Example (n = 10)
- 37 57 67 47 27 3 )
~~
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Dice Game

= We throw a fair, six-sided dice n times
= After each throw, you can either STOP or CONTINUE
= You win if you STOP at the last 6 within the n throws

Example (n = 10)
= 3,5,6,4,2, 3 , = LOSE!
~~

STOP
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= We throw a fair, six-sided dice n times
= After each throw, you can either STOP or CONTINUE
= You win if you STOP at the last 6 within the n throws

Example (n = 10)
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Dice Game

= We throw a fair, six-sided dice n times
= After each throw, you can either STOP or CONTINUE
= You win if you STOP at the last 6 within the n throws

Example (n = 10)
= 3,5,6,4,2, 3 , = LOSE!
~—~
STOP
= 3,5 6, = LOSE!
~—~
STOP
*3,5,6,4,231,2 6 ,
~—~
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Dice Game

= We throw a fair, six-sided dice n times
= After each throw, you can either STOP or CONTINUE
= You win if you STOP at the last 6 within the n throws

Example (n = 10)
= 3,5,6,4,2, 3 , = LOSE!
~—~
STOP
= 3,5 6, = LOSE!
~—~
STOP
= 3,5,6,4,2,3,1,2, 6 , =
~—~

STOP
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Introduction: Dice Game

Dice Game

= We throw a fair, six-sided dice n times
= After each throw, you can either STOP or CONTINUE
= You win if you STOP at the last 6 within the n throws

N
1\
(What is the optimal strategy for maximising the probability of winning?]

Example (n = 10)
= 3,5,6,4,2, 3 , = LOSE!
~—~
STOP
= 3,5 6, = LOSE!
~—~
STOP
= 3,5,6,4,2,3,1,2, 6 , =
~—~

STOP
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Introduction: Dice Game

Dice Game

= We throw a fair, six-sided dice n times
= After each throw, you can either STOP or CONTINUE
= You win if you STOP at the last 6 within the n throws

N
1\
[What is the optimal strategy for maximising the probability of winning?]
‘\-;‘=\>
Example (n = 10) This boils down to finding a
| threshold from which we STOP
" 356,42 3, = LOSE! as soon as a 6 is thrown.
STOP
= 3,5 6, = LOSE!
~~

STOP
= 3,5,6,4,2,3,1,2, 6 =
—~

STOP
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k—1
P [ obtain exactly one 6 in last k throws] = (f) . % . <§> = g o

0.6

0.5

0.4~

0.3~

0.2

0.1~

< We obtain a unimodal distribution ]

12345678 9101112
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P [ obtain exactly one 6 in last k throws] = (f) . % . <§> = g o

0.6

0.5

0.4~

0.3~

0.2

0.1~

< We obtain a unimodal distribution ]

12345678 9101112

= This is maximised for k = 6 (or k = 5)
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k—1
P [ obtain exactly one 6 in last k throws] = (f) . % . <§> = g o

0.6

0.5

0.4~

0.3~

0.2

0.1~

< We obtain a unimodal distribution ]

12345678 9101112

= This is maximised for k = 6 (or k = 5) = best strategy: wait until we have
6 (5) throws left, and then STOP at the first 6
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k—1
P [ obtain exactly one 6 in last k throws] = (f) . % . <§> = g o

0.6

0.5

0.4~

0.3~

0.2

0.1~

< We obtain a unimodal distribution ]

12345678 9101112

= This is maximised for k = 6 (or k = 5) = best strategy: wait until we have
6 (5) throws left, and then STOP at the first 6
= Probability of success is:
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Dice Game (Solution)

k—1
P [ obtain exactly one 6 in last k throws] = (f) . % . <§> = g o

0.6
0.5
0.4~

03 < We obtain a unimodal distribution ]

0.2

0.1~

12345678 9101112

= This is maximised for k = 6 (or k = 5) = best strategy: wait until we have
6 (5) throws left, and then STOP at the first 6

= Probability of success is:
5 5
(5)
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Dice Game (Solution)

k—1
P [ obtain exactly one 6 in last k throws] = (f) . % . <§> = g o

0.6
0.5
0.4~

03 < We obtain a unimodal distribution ]

0.2

0.1~

12345678 9101112

= This is maximised for k = 6 (or k = 5) = best strategy: wait until we have
6 (5) throws left, and then STOP at the first 6

= Probability of success is:
5 5
— =~ 0.40.
(5)
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The Problem
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random order
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= Goal: maximise the probability of hiring the best candidate
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[ also known as marriage problem (Kepler 1613), }
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the interview and cannot be recalled
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= Goal: maximise the probability of hiring the best candidate
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[ also known as marriage problem (Kepler 1613), }

hiring problem or best choice problem.

Further Remarks
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The Secretary Problem

The Problem

= We are interviewing n candidates for one job in a sequential,
random order

= A candidate must be accepted (STOP) or rejected immediately after
the interview and cannot be recalled

= Goal: maximise the probability of hiring the best candidate
I\

1\

[ also known as marriage problem (Kepler 1613), }

hiring problem or best choice problem.

Further Remarks

= After seeing candidate /i, we only know the relative order among the
first i candidates.

= For our problem we may as well assume that the only information we
have when interviewing candidate i is whether that candidate is best
among {1,...,i} or not.

Intro to Probability Stopping Problem 2: The Secretary Problem



lllustration (n = 20)

unknown permutation:

“NWHrhOOON®®O
1

— > Slep
0123 45 6 7 8 9 10111213 14 1516 17 18 19 20
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lllustration (n = 20)

unknown permutation:

“NWHrhOOON®®O
1

I , — step
0123 45 6 7 8 9 10111213 14 1516 17 18 19 20

T T T T T
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lllustration (n = 20)

unknown permutation:
4,7,

“NWHrhOOON®®O
1

I , — step
0123 45 6 7 8 9 10111213 14 1516 17 18 19 20

T T T T T
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lllustration (n = 20)

unknown permutation:
4,7,

“NWHrhOOON®®O
1

. ———> Step
3 45 6 7 8 9 10111213 14 15 16 17 18 19 20

T T T T T

1all
2

0 1
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lllustration (n = 20)

unknown permutation:
4,7,8,

“NWHrhOOON®®O
1

. ———> Step
3 45 6 7 8 9 10111213 14 15 16 17 18 19 20

T T T T T

1all
2

0 1
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lllustration (n = 20)

unknown permutation:
4,7,8,

“NWHrhOOON®®O
1

step
0123456 7 8 9 10111213 141516 17 18 19 20
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lllustration (n = 20)

unknown permutation:
4,7,8,6,

“NWHrhOOON®®O
1

step
0123456 7 8 9 10111213 141516 17 18 19 20
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lllustration (n = 20)

unknown permutation:
4,7,8,6,

“NWHrhOOON®®O
1

, > step
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

T T T T T

® 1 ]

ol
2

0 1
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lllustration (n = 20)

unknown permutation:
4,7,8,6,

“NWHrhOOON®®O
1

, > step
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

T T T T T

® 1 )
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2
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lllustration (n = 20)

unknown permutation:
4,7,8,6,

“NWHrhOOON®®O
1

step
0123456 7 8 9 10111213 141516 17 18 19 20
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lllustration (n = 20)

unknown permutation:
4,7,8,6,18,

“NWHrhOOON®®O
1

step
0123456 7 8 9 10111213 141516 17 18 19 20
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step
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4,7,8,6,18,11, 3,5,
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“NWHrhOOON®®O
1

step
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unknown permutation:
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lllustration (n = 20)

“NWHrhOOON®®O

unknown permutation:
4,7,8,6,18,11,3,5,9,13,17,2, 20, 14, 12,15, 10, 16, 19, 1.

i |

Only the local maxima (green bars) are relevant
= Their frequency is slowing down over time

(Exercise: What is the expected number of local maxima?)

01 23 456 7 8 9 10111213 14 1516 17 18 19 20

step
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Two Basic Strategies

Naive Approach

= Always pick the first (or any other) candidate
= Probability for success is:

P [ hire best candidate | = 15

Smarter Approach

= Reject the first n/2 candidates, then take the first candidate that is
better than the first n/2
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Two Basic Strategies

Naive Approach

= Always pick the first (or any other) candidate
= Probability for success is:

P [ hire best candidate | = 15

Smarter Approach

= Reject the first n/2 candidates, then take the first candidate that is
better than the first n/2 (if none is taken before, take last candidate)
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Two Basic Strategies

Naive Approach

= Always pick the first (or any other) candidate
= Probability for success is:

P [ hire best candidate | = 15

[A typical exploration-exploitation based strategy. ]

Smarter Approach Z/

= Reject the first n/2 candidates, then take the first candidate that is
better than the first n/2 (if none is taken before, take last candidate)
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Two Basic Strategies

Naive Approach

= Always pick the first (or any other) candidate
= Probability for success is:

P [ hire best candidate | = 15

[A typical exploration-exploitation based strategy. ]

Smarter Approach Z/

= Reject the first n/2 candidates, then take the first candidate that is
better than the first n/2 (if none is taken before, take last candidate)

N\
A\

[How good is this approach? ]
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Analysis of the Refined Approach

Example 1

Find a lower bound on the success probability of the refined approach
(picking the first candidate better than the first n/2).

Answer
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Example 1

Find a lower bound on the success probability of the refined approach
(picking the first candidate better than the first n/2).

Answer

= Probability for success is:

P [ hire best candidate ]
>
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Analysis of the Refined Approach

Example 1

Find a lower bound on the success probability of the refined approach
(picking the first candidate better than the first n/2).

Answer

= Probability for success is:

P [ hire best candidate ]
> P[ bestin 2nd half N second best in 1st half]
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Analysis of the Refined Approach

Example 1

Find a lower bound on the success probability of the refined approach
(picking the first candidate better than the first n/2).

Answer

= Probability for success is:

P [ hire best candidate ]
> P[ bestin 2nd half N second best in 1st half]
= P bestin 2nd half] - P [ second best in 1st half | bestin 2nd half]
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Analysis of the Refined Approach

Example 1

Find a lower bound on the success probability of the refined approach
(picking the first candidate better than the first n/2).

Answer

= Probability for success is:

P [ hire best candidate ]
> P[ bestin 2nd half N second best in 1st half]
= P bestin 2nd half] - P [ second best in 1st half | bestin 2nd half]
_njz nj2
n n-—1
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Analysis of the Refined Approach

Example 1

Find a lower bound on the success probability of the refined approach
(picking the first candidate better than the first n/2).

Answer

= Probability for success is:

P [ hire best candidate ]

> P[ bestin 2nd half N second best in 1st half]

= P bestin 2nd half] - P [ second best in 1st half | bestin 2nd half]
_n/2 nj2 1

n n-—1 4
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Finding the Optimal Strategy (1/2)

= Observation 1: At interview /i, it only matters if current candidate is best so
far (i.e., no benefit in counting how many “best-so-far” candidates we had).
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Finding the Optimal Strategy (1/2)

= Observation 1: At interview /i, it only matters if current candidate is best so
far (i.e., no benefit in counting how many “best-so-far” candidates we had).
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= Observation 1: At interview /i, it only matters if current candidate is best so
far (i.e., no benefit in counting how many “best-so-far” candidates we had).
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Finding the Optimal Strategy (1/2)

= Observation 1: At interview /i, it only matters if current candidate is best so
far (i.e., no benefit in counting how many “best-so-far” candidates we had).

5
771 All these permutations of the first
2R three candidates are equally likely!
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B
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Finding the Optimal Strategy (1/2)

= Observation 1: At interview /i, it only matters if current candidate is best so
far (i.e., no benefit in counting how many “best-so-far” candidates we had).

5
771 All these permutations of the first
2R three candidates are equally likely!

Ly 4

B
ol o0l Dol 0ot (ond o

= Observation 2: If at interview i/, the best strategy is to accept the
candidate (if it is “best-so-far”), then the same holds for interview j + 1
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Finding the Optimal Strategy (1/2)

= Observation 1: At interview /i, it only matters if current candidate is best so
far (i.e., no benefit in counting how many “best-so-far” candidates we had).

5
771 All these permutations of the first
2R three candidates are equally likely!

Ly 4

B
ol o0l Dol 0ot (ond o

= Observation 2: If at interview i/, the best strategy is to accept the
candidate (if it is “best-so-far”), then the same holds for interview j + 1

— Optimal Strategy
= Explore but reject the first x — 1 candidates
= Accept first candidate i > x which is better than all candidates before
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Example 2

Find x which maximises the probability of hiring the best candidate.

Answer

= First compute success probability for any x € {1, ..., n}, and then optimise:
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Example 2

Find x which maximises the probability of hiring the best candidate.

Answer

= First compute success probability for any x € {1, ..., n}, and then optimise:

P [ hire best candidate |

n
= > P|[hire candidate i N candidate i is best ]

i=1
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Answer
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Example 2

Find x which maximises the probability of hiring the best candidate.

Answer

= First compute success probability for any x € {1, ..., n}, and then optimise:

P [ hire best candidate |

n
= > P|[hire candidate i N candidate i is best ]

i=1

n
=) _P[hire candidate i N candidate i is best ]

i=x

n
= Z P [hire candidate i | candidate i is best | - P[ candidate i is best ]

i=x
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Example 2

Find x which maximises the probability of hiring the best candidate.

Answer

= First compute success probability for any x € {1, ..., n}, and then optimise:
P [ hire best candidate |

n
= > P|[hire candidate i N candidate i is best ]
i=

n
=) _P[hire candidate i N candidate i is best ]

i=x

i=x

n
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Example 2

Find x which maximises the probability of hiring the best candidate.

Answer

= First compute success probability for any x € {1, ..., n}, and then optimise:

P [ hire best candidate |

n
= > P|[hire candidate i N candidate i is best ]
i=

n
=) _P[hire candidate i N candidate i is best ]

i=x

n
= Z P [hire candidate i | candidate i is best | - P[ candidate i is best ]
i=x
1

n
=5 Z P [second best of first i candidates is in the first x — 1 | candidate i is best ]
i=x
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Example 2

Find x which maximises the probability of hiring the best candidate.

Answer

= First compute success probability for any x € {1, ..., n}, and then optimise:

P [ hire best candidate |

n
= > P|[hire candidate i N candidate i is best ]
i=

n
=) _P[hire candidate i N candidate i is best ]

i=x

n
= Z P [hire candidate i | candidate i is best | - P[ candidate i is best ]

i=x
1 n
=—- Z P [second best of first i candidates is in the first x — 1 | candidate i is best ]
i=x
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Example 2

Find x which maximises the probability of hiring the best candidate.

Answer

= First compute success probability for any x € {1, ..., n}, and then optimise:

P [hire best candidate ]

n
= > P|[hire candidate i N candidate i is best ]

i=1

n
=) _P[hire candidate i N candidate i is best ]

i=x

n
= Z P [hire candidate i | candidate i is best | - P[ candidate i is best ]

i=x
1 n
=—- Z P [second best of first i candidates is in the first x — 1 | candidate i is best ]
i=x
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Example 2

Find x which maximises the probability of hiring the best candidate.

Answer

= First compute success probability for any x € {1, ..., n}, and then optimise:

P [hire best candidate ]

n
= > P|[hire candidate i N candidate i is best ]
i=

n
=) _P[hire candidate i N candidate i is best ]

i=x

n
= Z P [hire candidate i | candidate i is best | - P[ candidate i is best ]

i=x

n
= 1 Z P [second best of first i candidates is in the first x — 1 | candidate i is best ]
i=x

_1ix—1_x—1 =~ 1 ; : —t :
n &Zi-1  n &Zi-A ,

n

= > i—1 TR In(n/x)
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Example 2

Find x which maximises the probability of hiring the best candidate.

Answer

= First compute success probability for any x € {1, ..., n}, and then optimise:

P [hire best candidate ]

n
= > P|[hire candidate i N candidate i is best ]

i=1

n
=) _P[hire candidate i N candidate i is best ]

i=x

n
= Z P [hire candidate i | candidate i is best | - P[ candidate i is best ]

i=x

1

n
Z P [second best of first i candidates is in the first x — 1 | candidate i is best ]
i=x

n

1 ixq ox—1 1 ; : —t :
" n ~i-1 n “~ij-1
1=X

n

= Z — ~In(n/x) = maximum success probabiliy for x = 1.n
=X
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Probability for Success (lllustration)

Suppose n = 50:

P[success]

1_ ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
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Probability for Success (lllustration)

Suppose n = 50:

P[success]
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Another Variant of the Secretary Problem

“The Postdoc Variant of the Secretary Problem” (Vanderbei’80)

= same setup as in the secretary problem before

= difference: we want to pick the second-best (“the best [postdoc] is
going to Harvard”)

= Success probability of the optimal strategy is:

0.257"  noo 1
n(n—1) 4

= Thus it is easier to pick the best than the second-best(!)
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Outline

A Generalisation: The Odds Algorithm (non-examinable)
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Details of the Odds Algorithm

= Let Iy, b,. .., I, be a sequence of independent indicators and let p; = E [ /;]
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Details of the Odds Algorithm

= Let Iy, bk, ..., I, be a sequence of independent indicators and let p; = E [ /;]

 Letr = 1ffpj (the odds) and p; € (0,1) forall j=1,2,...,n
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Details of the Odds Algorithm

= Let Iy, bk, ..., I, be a sequence of independent indicators and let p; = E [ /;]

 Letr = 1ffpj (the odds) and p; € (0,1) forall j=1,2,...,n

Example 3

What is the probability that after trial k, there is exactly one success?

Answer
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Details of the Odds Algorithm

= Let Iy, bk, ..., I, be a sequence of independent indicators and let p; = E [ /;]

 Letr = 1ffpj (the odds) and p; € (0,1) forall j=1,2,...,n

Example 3

What is the probability that after trial k, there is exactly one success?

Answer
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Details of the Odds Algorithm

= Let Iy, bk, ..., I, be a sequence of independent indicators and let p; = E [ /;]

 Letr = 1ffpj (the odds) and p; € (0,1) forall j=1,2,...,n

Example 3

What is the probability that after trial k, there is exactly one success?

Answer

n

P[Z//:1] =>p I 0-p)
=k =

K<j<n,j#i
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Details of the Odds Algorithm

= Let /, /2, . In be a sequence of independent indicators and let p; =E[/]
" letr = (the odds) and p; € (0,1) forallj =1,2,.

Example 3

What is the probability that after trial k, there is exactly one success?

Answer

n

kS/’Sn,/#l
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Details of the Odds Algorithm

= Let /, /2, . In be a sequence of independent indicators and let p; =E[/]
" letr = (the odds) and p; € (0,1) forallj =1,2,.

Example 3

What is the probability that after trial k, there is exactly one success?

Answer

n

kS/’Sn,/#l

= One can prove that P [E;’zk =1 } is unimodal in k = there is an
ideal point from which on we should STOP at the first success!

Intro to Probability A Generalisation: The Odds Algorithm (non-examinable)



Details of the Odds Algorithm

= Let /, /2, . In be a sequence of independent indicators and let p; =E[/]

" letr = (the odds) and p; € (0,1) forallj =1,2,.

Example 3

What is the probability that after trial k, there is exactly one success?

Answer

n

D=1 =>p- J[ (1-p) Zr, <H1—pf)>
j=k j=k i=k

K<j<n,j#i

= One can prove that P [E;’zk =1 } is unimodal in k = there is an
ideal point from which on we should STOP at the first success!

1. Let k* be the largest k such that >°7 , r; > 1

~——— Odds Algorithm (“Sum the Odds to One and Stop”, F. Thomas Bruss, 2000) —

2. Ignore everything before the k*-th trial, then STOP at the first success.
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Details of the Odds Algorithm

= Let /, 12, . I,7 be a sequence of independent indicators and let p; =E[/]
" letr = (the odds) and p; € (0,1) forallj =1,2,.

Example 3

What is the probability that after trial k, there is exactly one success?

Answer

n

kSiS",/#l

= One can prove that P [E;’zk =1 } is unimodal in k = there is an
ideal point from which on we should STOP at the first success!

~——— Odds Algorithm (“Sum the Odds to One and Stop”, F. Thomas Bruss, 2000) —

1. Let k* be the largest k such that >°7 , r; > 1
2. Ignore everything before the k*-th trial, then STOP at the first success.
2

{ * The success probability is 3= . ;- (ITk (1 — p1))-
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Details of the Odds Algorithm

= Let /, 12, . I,7 be a sequence of independent indicators and let p; =E[/]
" letr = (the odds) and p; € (0,1) forallj =1,2,.

Example 3

What is the probability that after trial k, there is exactly one success?

Answer

n

kSiS",/#l

= One can prove that P [E;’zk =1 } is unimodal in k = there is an
ideal point from which on we should STOP at the first success!

~——— Odds Algorithm (“Sum the Odds to One and Stop”, F. Thomas Bruss, 2000) —

1. Let k* be the largest k such that >°7 , r; > 1
2. Ignore everything before the k*-th trial, then STOP at the first success.
2

* The success probability is 3= . ;- (ITk (1 — p1))-
* This algorithm always executes the optimal strategy!

Intro to Probability A Generalisation: The Odds Algorithm (non-examinable) 16



lllustration of the probability of having the last success (n = 100)

Vi(k)

0.40

0.35} ]

0.30 | i
maximum:

0.25 Bj_prj=1

0.20

0.15

0.10

0.05

0.00

0 20 40 60 80 100
k

Source: Group Fibonado
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Example 4
Use the Odds Algorithm to analyse the Secretary Problem.

Answer

= Let /; = 1 if and only if secretary j is the best secretary so far.
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Example 4
Use the Odds Algorithm to analyse the Secretary Problem.

Answer
= Let /; = 1 if and only if secretary j is the best secretary so far.
= The /s are independent (this is an question is on the exercise sheet)
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Example 4

Use the Odds Algorithm to analyse the Secretary Problem.

Answer

= Let /; = 1 if and only if secretary j is the best secretary so far.

= The /s are independent (this is an question is on the exercise sheet)
= Then:

1
p=Pl=1]=7

P B U/ B
Ty G- -
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Example 4
Use the Odds Algorithm to analyse the Secretary Problem.

Answer

= Let /; = 1 if and only if secretary j is the best secretary so far.

= The /s are independent (this is an question is on the exercise sheet)
= Then:

1
p=Pl=1]=7
p; 1/i 1

= = = D= —
g G- -1

* Largest k for which 337 5 > 1isk=1/e-n
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secretary problem as a special case!
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List of Lectures

Part I: Introduction to Probability
= Lecture 1: Conditional probabilities and Bayes’ theorem

Part ll: Random Variables

Lecture 2:
Lecture 3:
Lecture 4:
Lecture 5:
Lecture 6:
Lecture 7:

Random variables, probability mass function, expectation
Expectation properties, variance, discrete distributions

More discrete distributions: Poisson, Geometric, Negative Binomial
Continuous random variables

Marginals and Joint Distributions

Independence, Covariance and Correlation

Part lll: Moments and Limit Theorems

= Lecture 8: Basic Inequalities and Law of Large Numbers
= Lecture 9: Central Limit Theorem

Part IV: Applications and Statistics
= Lecture 10: Estimators (Part I)
= Lecture 11: Estimators (Part Il)
= Lecture 12: Online Algorithms
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List of Distributions

Very Important:
= Bernoulli, Binomial, Poisson
= (Continuous) Uniform, Normal, Exponential

(Somewhat Less) Important:
= Geometric, Negative Binomial, Hypergeometric, Discrete Uniform

Not used or not defined in this course (and thus not examinable):
= Cauchy, Gamma, bivariate Normal
= Beta
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[ Thank you and Best Wishes for the Exam! ]

Intro to Probability The End...

22



	Stopping Problem 1: Dice Game
	Stopping Problem 2: The Secretary Problem
	A Generalisation: The Odds Algorithm (non-examinable)
	The End...

