Introduction to Probability

Lecture 12: Online Algorithms
Mateja Jamnik, Thomas Sauerwald

University of Cambridge, Department of Computer Science and Technology email: {mateja.jamnik,thomas.sauerwald}@cl.cam.ac.uk

Faster 2025

Outline

Stopping Problem 1: Dice Game

Stopping Problem 2: The Secretary Problem

A Generalisation: The Odds Algorithm (non-examinable)

The End...

Introduction: Dice Game

Dice Game

- We throw a fair, six-sided dice n times
- After each throw, you can either STOP or CONTINUE
- You win if you STOP at the last 6 within the n throws

What is the optimal strategy for maximising the probability of winning?

Example (n = 10)

■ $3, 5, 6, 4, 2, 3, 1, 2, 6, 5 \Rightarrow LOSE!$

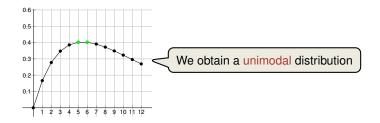
This boils down to finding a threshold from which we STOP as soon as a 6 is thrown.

■
$$3, 5, \underbrace{6}_{\text{STOP}}, 4, 2, 3, 1, 2, 6, 5 \Rightarrow \text{LOSE!}$$

■
$$3, 5, 6, 4, 2, 3, 1, 2, \underbrace{6}_{\text{STOP}}, 5 \Rightarrow \text{WIN!}$$

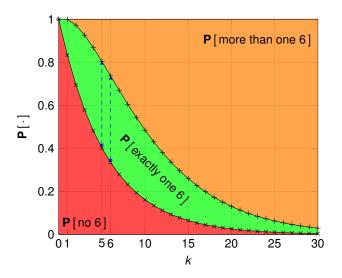
Dice Game (Solution)

P[obtain exactly one 6 in last
$$k$$
 throws] = $\binom{k}{1} \cdot \frac{1}{6} \cdot \left(\frac{5}{6}\right)^{k-1} = \frac{k}{6} \cdot \left(\frac{5}{6}\right)^{k-1}$



- This is maximised for k = 6 (or k = 5) \Rightarrow best strategy: wait until we have 6 (5) throws left, and then STOP at the first 6
- Probability of success is:

$$\left(\frac{5}{6}\right)^5 \approx 0.40$$



Outline

Stopping Problem 1: Dice Game

Stopping Problem 2: The Secretary Problem

A Generalisation: The Odds Algorithm (non-examinable)

The End...

The Secretary Problem

The Problem

- We are interviewing n candidates for one job in a sequential, random order
- A candidate must be accepted (STOP) or rejected immediately after the interview and cannot be recalled
- Goal: maximise the probability of hiring the best candidate

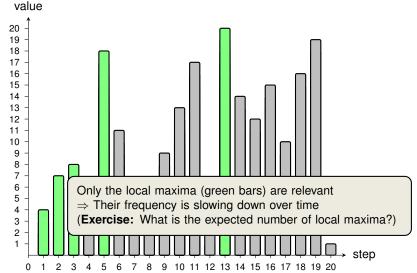
also known as marriage problem (Kepler 1613), hiring problem or best choice problem.

Further Remarks -

- After seeing candidate i, we only know the relative order among the first i candidates.
- \Rightarrow For our problem we may as well assume that the only information we have when interviewing candidate i is whether that candidate is best among $\{1, \ldots, i\}$ or not.

Illustration (n = 20)

unknown permutation: 4, 7, 8, 6, 18, 11, 3, 5, 9, 13, 17, 2, 20, 14, 12, 15, 10, 16, 19, 1.



Two Basic Strategies

Naive Approach -

- Always pick the first (or any other) candidate
- Probability for success is:

P[hire best candidate] =
$$\frac{1}{n}$$
.

A typical exploration-exploitation based strategy.

Smarter Approach -

 Reject the first n/2 candidates, then take the first candidate that is better than the first n/2 (if none is taken before, take last candidate)

How good is this approach?

Analysis of the Refined Approach

Example 1

Find a lower bound on the success probability of the refined approach (picking the first candidate better than the first n/2).

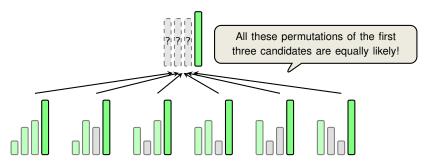
Answer

- Probability for success is:
 - P[hire best candidate]
 - \geq **P**[best in 2nd half \cap second best in 1st half]
 - $= \mathbf{P}[$ best in 2nd half $] \cdot \mathbf{P}[$ second best in 1st half | best in 2nd half]

$$=\frac{n/2}{n}\cdot\frac{n/2}{n-1}>\frac{1}{4}.$$

Finding the Optimal Strategy (1/2)

 Observation 1: At interview i, it only matters if current candidate is best so far (i.e., no benefit in counting how many "best-so-far" candidates we had).



- Observation 2: If at interview i, the best strategy is to accept the candidate (if it is "best-so-far"), then the same holds for interview i + 1
 - Optimal Strategy
 - Explore but reject the first x 1 candidates
 - Accept first candidate $i \ge x$ which is better than all candidates before

Example 2

Find x which maximises the probability of hiring the best candidate.

Answer

■ First compute success probability for any $x \in \{1, ..., n\}$, and then optimise:

P[hire best candidate]

$$= \sum_{i=1}^{n} \mathbf{P}[\text{hire candidate } i \cap \text{ candidate } i \text{ is best }]$$

$$=\sum_{i=1}^{m}\mathbf{P}$$
 [hire candidate $i\cap$ candidate i is best]

$$= \sum_{i=1}^{n} \mathbf{P}[\text{hire candidate } i \mid \text{ candidate } i \text{ is best }] \cdot \mathbf{P}[\text{ candidate } i \text{ is best }]$$

$$= \frac{1}{n} \cdot \sum_{i=x}^{n} \mathbf{P}[\text{ second best of first } i \text{ candidates is in the first } x - 1 \mid \text{ candidate } i \text{ is best }]$$

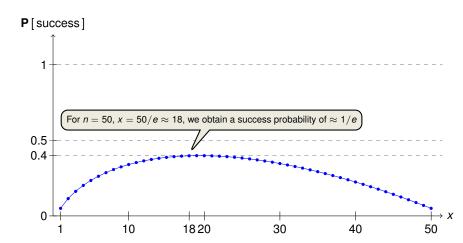
$$= \frac{1}{n} \cdot \sum_{i=x}^{n} \frac{x-1}{i-1} = \frac{x-1}{n} \cdot \sum_{i=x}^{n} \frac{1}{i-1}$$

$$1$$
 x
 $i-1$
 i
 n

$$\Rightarrow \sum_{i=1}^{n} \frac{1}{i-1} \approx \ln(n/x) \Rightarrow \text{maximum success probability for } x = \frac{1}{e} \cdot n.$$

Probability for Success (Illustration)

Suppose n = 50:



Another Variant of the Secretary Problem

- "The Postdoc Variant of the Secretary Problem" (Vanderbei'80) =
- same setup as in the secretary problem before
- difference: we want to pick the second-best ("the best [postdoc] is going to Harvard")
- Success probability of the optimal strategy is:

$$\frac{0.25n^2}{n(n-1)} \quad \stackrel{n\to\infty}{\longrightarrow} \quad \frac{1}{4}$$

Thus it is easier to pick the best than the second-best(!)

Outline

Stopping Problem 1: Dice Game

Stopping Problem 2: The Secretary Problem

A Generalisation: The Odds Algorithm (non-examinable)

The End...

Details of the Odds Algorithm

- Let I_1, I_2, \ldots, I_n be a sequence of independent indicators and let $p_i = \mathbf{E}[I_i]$
- Let $r_j := \frac{p_j}{1-p_i}$ (the odds) and $p_j \in (0,1)$ for all $j = 1,2,\ldots,n$

Example 3

What is the probability that after trial k, there is exactly one success?

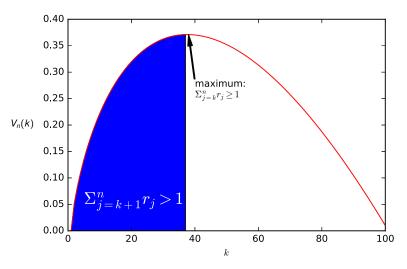
$$\mathbf{P}\left[\sum_{j=k}^{n}I_{j}=1\right]=\sum_{j=k}^{n}p_{j}\cdot\prod_{k\leq j\leq n, j\neq i}^{n}(1-p_{i})=\sum_{j=k}^{n}r_{j}\cdot\left(\prod_{i=k}^{n}(1-p_{i})\right)$$

• One can prove that $P\left[\sum_{j=k}^{n} I_{j} = 1\right]$ is unimodal in $k \Rightarrow$ there is an ideal point from which on we should STOP at the first success!

Odds Algorithm ("Sum the Odds to One and Stop", F. Thomas Bruss, 2000)

- 1. Let k^* be the largest k such that $\sum_{j=k}^n r_j \ge 1$ 2. Ignore everything before the k^* -th trial, then STOP at the first success.
 - The success probability is $\sum_{j=k^*}^n r_j \cdot (\prod_{i=k^*}^n (1-p_i))$.
 - This algorithm always executes the optimal strategy!

Illustration of the probability of having the last success (n = 100)



Source: Group Fibonado

Use the Odds Algorithm to analyse the Secretary Problem.

- Let $I_i = 1$ if and only if secretary j is the best secretary so far.
- The l_i 's are independent (this is an question is on the exercise sheet)
- Then:

$$p_j = \mathbf{P} [I_j = 1] = \frac{1}{j}$$
 $r_j = \frac{p_j}{1 - p_j} = \frac{1/j}{(j - 1)/j} = \frac{1}{j - 1}$

- Largest k for which $\sum_{i=k}^{n} \frac{1}{i-1} \ge 1$ is $k = 1/e \cdot n$
- Probability for success:

$$\mathbf{P}\left[\sum_{j=k}^{n} I_{j} = 1\right] = \sum_{j=k}^{n} r_{j} \cdot \left(\prod_{i=k}^{n} (1 - p_{i})\right)$$

We re-derived the solution of the secretary problem as a special case! $= \sum_{i=1}^{n} \frac{1}{j-1} \cdot \left(\prod_{i=1}^{n} \frac{i-1}{i} \right)$

$$= \sum_{j=k}^{n} \frac{1}{j-1} \cdot \left(\prod_{i=k}^{n} \frac{i-1}{i} \right)$$

$$=\sum_{i=k}^n\frac{1}{j-1}\cdot\frac{k-1}{n}\approx\frac{1}{e}.$$

Outline

Stopping Problem 1: Dice Game

Stopping Problem 2: The Secretary Problem

A Generalisation: The Odds Algorithm (non-examinable)

The End...

List of Lectures

Part I: Introduction to Probability

Lecture 1: Conditional probabilities and Bayes' theorem

Part II: Random Variables

- Lecture 2: Random variables, probability mass function, expectation
- Lecture 3: Expectation properties, variance, discrete distributions
- Lecture 4: More discrete distributions: Poisson, Geometric, Negative Binomial
- Lecture 5: Continuous random variables
- Lecture 6: Marginals and Joint Distributions
- Lecture 7: Independence, Covariance and Correlation

Part III: Moments and Limit Theorems

- Lecture 8: Basic Inequalities and Law of Large Numbers
- Lecture 9: Central Limit Theorem

Part IV: Applications and Statistics

- Lecture 10: Estimators (Part I)
- Lecture 11: Estimators (Part II)
- Lecture 12: Online Algorithms

Intro to Probability The End... 20

List of Distributions

Very Important:

- Bernoulli, Binomial, Poisson
- (Continuous) Uniform, Normal, Exponential

(Somewhat Less) Important:

Geometric, Negative Binomial, Hypergeometric, Discrete Uniform

Not used or not defined in this course (and thus not examinable):

- Cauchy, Gamma, bivariate Normal
- Beta

Thank you and Best Wishes for the Exam!