Extra Slide on the Collision Algorithm (non-examinable)

- + The algorithm runs in (expected) sublinear time $O(\sqrt{N})$, where N := |S|
- The algorithm does not take a pre-specified and fixed number of samples

What can we do with a fixed number of samples *n*?

- We cannot find an unbiased estimator that works for any N (similar to Lecture 10, Slide 22)
- Could use hypothesis testing: For a fixed sample (x₁, x₂,..., x_n) with c collisions, what is the probability to have c collisions under hypothesis that N ≥ x (or N = x) for some value x?
- Bayesian Approach: Assume unknown parameter *N* comes from a (known) probability distribution (called prior distribution). For a fixed sample (*x*₁, *x*₂,..., *x_n*), update the probability distribution (called posterior distribution)

$$N \sim \operatorname{Exp}(1/1000) \xrightarrow{X_1 = x_1, \ldots, X_n = x_n} N \sim \left(\operatorname{Exp}(1/1000) \mid X_1 = x_1, \ldots, X_n = x_n \right)$$