Introduction to Probability

Lecture 11: Estimators (Part II)
Mateja Jamnik, Thomas Sauerwald

University of Cambridge, Department of Computer Science and Technology email: {mateja.jamnik,thomas.sauerwald}@cl.cam.ac.uk

Faster 2025

Outline

Estimating Population Size (First Model)

Mean Squared Error

Estimating Population Size (Second Model)

- Suppose we have a sample of a few serial numbers (IDs) of some product
- We assume IDs are running from 1 to an unknown parameter N (so $N = \theta$)
- Each of the IDs is drawn without replacement from the discrete uniform distribution over {1,2,...,N}

- Suppose we have a sample of a few serial numbers (IDs) of some product
- We assume IDs are running from 1 to an unknown parameter N (so $N = \theta$)
- Each of the IDs is drawn without replacement from the discrete uniform distribution over {1,2,...,N}
- This is also known as Tank Estimation Problem or (Discrete) Taxi Problem

- Suppose we have a sample of a few serial numbers (IDs) of some product
- We assume IDs are running from 1 to an unknown parameter N (so $N = \theta$)
- Each of the IDs is drawn without replacement from the discrete uniform distribution over {1,2,...,N}
- This is also known as Tank Estimation Problem or (Discrete) Taxi Problem

7, 3, 10, 46, 14

- Suppose we have a sample of a few serial numbers (IDs) of some product
- We assume IDs are running from 1 to an unknown parameter N (so $N = \theta$)
- Each of the IDs is drawn without replacement from the discrete uniform distribution over {1,2,...,N}
- This is also known as Tank Estimation Problem or (Discrete) Taxi Problem

- Warning -

• As before, we denote the samples X_1, X_2, \dots, X_n

- Suppose we have a sample of a few serial numbers (IDs) of some product
- We assume IDs are running from 1 to an unknown parameter N (so $N = \theta$)
- Each of the IDs is drawn without replacement from the discrete uniform distribution over {1,2,...,N}
- This is also known as Tank Estimation Problem or (Discrete) Taxi Problem

Warning -

- As before, we denote the samples X_1, X_2, \dots, X_n
- Since sampling is without replacement:

- Suppose we have a sample of a few serial numbers (IDs) of some product
- We assume IDs are running from 1 to an unknown parameter N (so $N = \theta$)
- Each of the IDs is drawn without replacement from the discrete uniform distribution over {1,2,...,N}
- This is also known as Tank Estimation Problem or (Discrete) Taxi Problem

Warning -

- As before, we denote the samples X_1, X_2, \dots, X_n
- Since sampling is without replacement:
 - they are not independent! (but identically distributed)

- Suppose we have a sample of a few serial numbers (IDs) of some product
- We assume IDs are running from 1 to an unknown parameter N (so $N = \theta$)
- Each of the IDs is drawn without replacement from the discrete uniform distribution over {1,2,...,N}
- This is also known as Tank Estimation Problem or (Discrete) Taxi Problem

Warning -

- As before, we denote the samples X_1, X_2, \dots, X_n
- Since sampling is without replacement:
 - they are not independent! (but identically distributed)
 - their number must satisfy n ≤ N

First Estimator Based on Sample Mean

Example 1 -				
Construct an unbiased estimator T_1 using the sample mean.				
			Answer -	

■ Suppose *n* = 5

- Suppose n = 5
- Let the sample be

- Suppose *n* = 5
- Let the sample be

The estimator returns:

$$T_1 = 2 \cdot \overline{X}_n - 1 =$$

- Suppose *n* = 5
- Let the sample be

The estimator returns:

$$T_1 = 2 \cdot \overline{X}_n - 1 = 2 \cdot \frac{80}{5} - 1 =$$

- Suppose *n* = 5
- Let the sample be

The estimator returns:

$$T_1 = 2 \cdot \overline{X}_n - 1 = 2 \cdot \frac{80}{5} - 1 = 31 \odot$$

- Suppose *n* = 5
- Let the sample be

The estimator returns:

$$T_1 = 2 \cdot \overline{X}_n - 1 = 2 \cdot \frac{80}{5} - 1 = 31 \odot$$

This estimator will often unnecessarily underestimate the true value *N*.

- Suppose n = 5
- Let the sample be

The estimator returns:

$$T_1 = 2 \cdot \overline{X}_n - 1 = 2 \cdot \frac{80}{5} - 1 = 31 \odot$$

This estimator will often unnecessarily underestimate the true value *N*.

Challenging exercise: Find a lower bound on $P[T_1 < \max(X_1, X_2, ..., X_n)]$

- Suppose *n* = 5
- Let the sample be

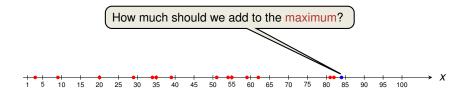
The estimator returns:

$$T_1 = 2 \cdot \overline{X}_n - 1 = 2 \cdot \frac{80}{5} - 1 = 31 \odot$$

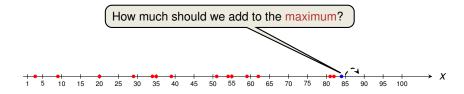
This estimator will often unnecessarily underestimate the true value *N*.

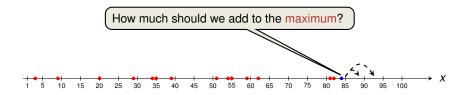
Challenging exercise: Find a lower bound on $P[T_1 < \max(X_1, X_2, ..., X_n)]$

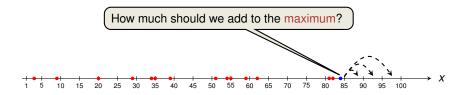
- Achieving unbiasedness alone is not a good strategy
- Improvement: find an estimator which always returns a value at least max(X₁, X₂,..., X_n)

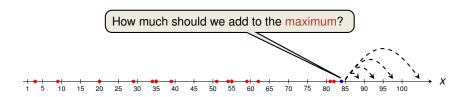

■ Suppose *n* = 15

- Suppose *n* = 15
- Our samples are:

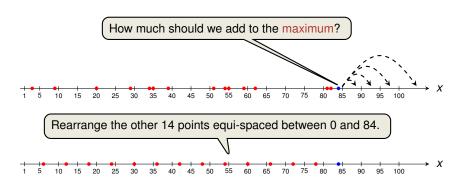

- Suppose *n* = 15
- Our samples are:

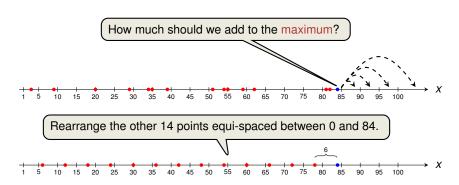

- Suppose *n* = 15
- Our samples are:

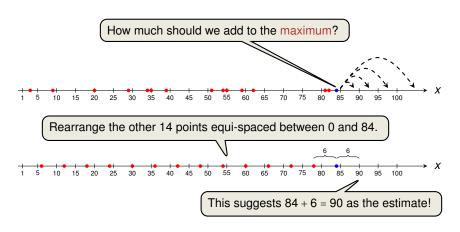

- Suppose *n* = 15
- Our samples are:

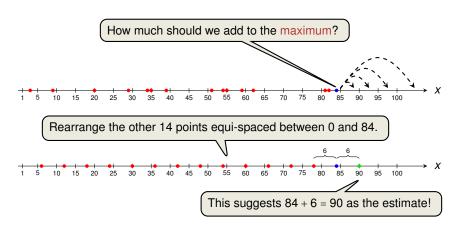

- Suppose *n* = 15
- Our samples are:

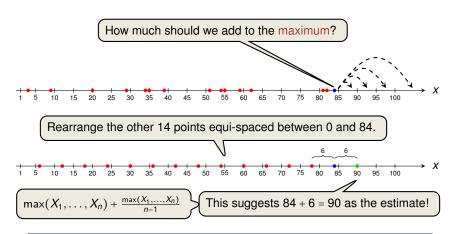

- Suppose *n* = 15
- Our samples are:


- Suppose *n* = 15
- Our samples are:

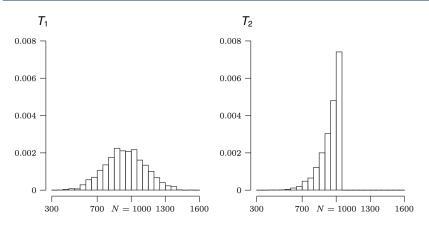

- Suppose *n* = 15
- Our samples are:


- Suppose *n* = 15
- Our samples are:

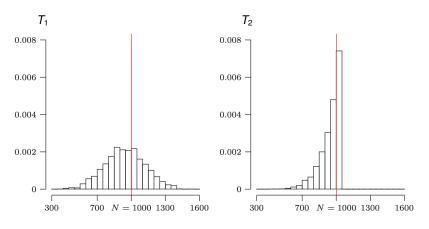

- Suppose *n* = 15
- Our samples are:


- Suppose *n* = 15
- Our samples are:

- Suppose *n* = 15
- Our samples are:

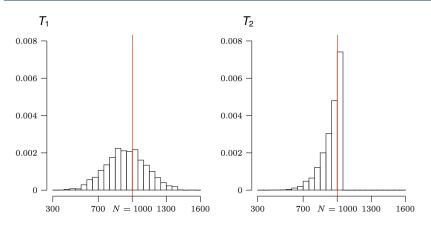

- Suppose *n* = 15
- Our samples are:

Deriving the Estimator Based on Maximum Sample


Empirical Analysis of the two Estimators

Source: Modern Introduction to Statistics

Figure: Histogram of 2000 values for T_1 and T_2 , when N = 1000 and n = 10.


Empirical Analysis of the two Estimators

Source: Modern Introduction to Statistics

Figure: Histogram of 2000 values for T_1 and T_2 , when N = 1000 and n = 10.

Empirical Analysis of the two Estimators

Source: Modern Introduction to Statistics

Figure: Histogram of 2000 values for T_1 and T_2 , when N = 1000 and n = 10.

Can we find a quantity that captures the superiority of T_2 over T_1 ?

Outline

Estimating Population Size (First Model)

Mean Squared Error

Estimating Population Size (Second Model)

Mean Squared Error Definition —

Let T be an estimator for a parameter θ . The mean squared error of T is

$$\mathbf{MSE}[T] = \mathbf{E}[(T - \theta)^2].$$

Mean Squared Error Definition -

Let T be an estimator for a parameter θ . The mean squared error of T is

$$\mathsf{MSE}[T] = \mathsf{E}[(T - \theta)^2].$$

• According to this, estimator T_1 better than T_2 if $MSE[T_1] < MSE[T_2]$.

Intro to Probability Mean Squared Error 10

Mean Squared Error Definition —

Let T be an estimator for a parameter θ . The mean squared error of T is

$$\mathbf{MSE}[T] = \mathbf{E}[(T - \theta)^2].$$

• According to this, estimator T_1 better than T_2 if $MSE[T_1] < MSE[T_2]$.

Bias-Variance Decomposition

The mean squared error can be decomposed into:

Intro to Probability Mean Squared Error 10

Mean Squared Error Definition —

Let T be an estimator for a parameter θ . The mean squared error of T is

$$\mathbf{MSE}[T] = \mathbf{E}[(T - \theta)^2].$$

• According to this, estimator T_1 better than T_2 if $MSE[T_1] < MSE[T_2]$.

Bias-Variance Decomposition

The mean squared error can be decomposed into:

$$MSE[T] = (E[T] - \theta)^2 + V[T]$$

Mean Squared Error Definition —

Let T be an estimator for a parameter θ . The mean squared error of T is

$$\mathsf{MSE}\left[\ T\ \right] = \mathsf{E}\left[\ (T - \theta)^2\ \right].$$

• According to this, estimator T_1 better than T_2 if $MSE[T_1] < MSE[T_2]$.

Bias-Variance Decomposition

The mean squared error can be decomposed into:

$$MSE[T] = \underbrace{(E[T] - \theta)^2}_{= Bias^2} + V[T]$$

Mean Squared Error Definition —

Let T be an estimator for a parameter θ . The mean squared error of T is

$$\mathsf{MSE}\left[\ T\ \right] = \mathsf{E}\left[\ (T - \theta)^2\ \right].$$

• According to this, estimator T_1 better than T_2 if $MSE[T_1] < MSE[T_2]$.

Bias-Variance Decomposition

The mean squared error can be decomposed into:

MSE
$$[T] = \underbrace{(\mathbf{E}[T] - \theta)^2}_{= \text{Bias}^2} + \underbrace{\mathbf{V}[T]}_{= \text{Variance}}$$

Mean Squared Error Definition —

Let T be an estimator for a parameter θ . The mean squared error of T is

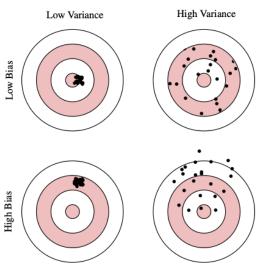
$$\mathsf{MSE}\left[\ T\ \right] = \mathsf{E}\left[\ (T - \theta)^2\ \right].$$

• According to this, estimator T_1 better than T_2 if $MSE[T_1] < MSE[T_2]$.

Bias-Variance Decomposition ——

The mean squared error can be decomposed into:

MSE[
$$T$$
] = $\underbrace{(\mathbf{E}[T] - \theta)^2}_{\text{= Bias}^2} + \underbrace{\mathbf{V}[T]}_{\text{= Variance}}$


• If T_1 and T_2 are both unbiased, T_1 is better than T_2 iff $V[T_1] < V[T_2]$.

Bias-Variance Decomposition: Derivation

Example 3

We need to prove: $MSE[T] = (E[T] - \theta)^2 + V[T].$

Mean Squared Error 11

Source: Edwin Leuven (Point Estimation)

12

It holds that $\mathbf{MSE} \left[\ T_1 \ \right] = \Theta \left(\frac{N^2}{n} \right)$, where $T_1 = 2 \cdot \overline{X}_n - 1$.

Answer

13

Example 5

It holds that **MSE** $[T_2] = \Theta\left(\frac{N^2}{n^2}\right)$, where $T_2 = \frac{n+1}{n} \cdot \max(X_1, \dots, X_n) - 1$.

Answer

Analysis of the MSE for T_2 (non-examinable)

Example 5

It holds that **MSE** $[T_2] = \Theta\left(\frac{N^2}{n^2}\right)$, where $T_2 = \frac{n+1}{n} \cdot \max(X_1, \dots, X_n) - 1$.

- T_2 is unbiased \Rightarrow need $V [T_2]$ which reduces to $V [\max(X_1, ..., X_n)]$
- For details see Dekking et al. One can prove:

$$V[\max(X_1,...,X_n)] = \cdots = \frac{n(N+1)(N-n)}{(n+2)(n+1)^2} = \Theta\left(\frac{N^2}{n^2}\right)$$

Equi-spaced (idealised) configuration suggests a standard deviation of $\sigma \approx \frac{N}{n}$

Maximum could have equally likely taken any value between 79 and 90

Mean Squared Error 14

Analysis of the MSE for T_2 (non-examinable)

Example 5

It holds that **MSE** $[T_2] = \Theta\left(\frac{N^2}{n^2}\right)$, where $T_2 = \frac{n+1}{n} \cdot \max(X_1, \dots, X_n) - 1$.

Answer

- T_2 is unbiased \Rightarrow need $V[T_2]$ which reduces to $V[\max(X_1, ..., X_n)]$
- One can prove: For details see Dekking et al.

$$V[\max(X_1,...,X_n)] = \cdots = \frac{n(N+1)(N-n)}{(n+2)(n+1)^2} = \Theta\left(\frac{N^2}{n^2}\right)$$

Equi-spaced (idealised) configuration suggests a standard deviation of $\sigma \approx \frac{N}{n}$

Maximum could have equally likely taken any value between 79 and 90

- MSE [T_2] is much lower than MSE [T_1] = $\Theta\left(\frac{N^2}{n}\right)$, i.e., $\frac{\text{MSE}[T_1]}{\text{MSE}[T_2]} = \frac{n+2}{3}$
- \Rightarrow confirms simulations suggesting that T_2 is better than T_1 !
- can be shown T_2 is the best unbiased estimator, i.e., it minimises MSE.

Outline

Estimating Population Size (First Model)

Mean Squared Error

Estimating Population Size (Second Model)

Previous Model -

- Population/ID space S = {1,2,..., N}
- We take uniform samples from S without replacement
- Goal: Find estimator for N

— Previous Model ——

- Population/ID space $S = \{1, 2, ..., N\}$
- We take uniform samples from S without replacement
- Goal: Find estimator for N

- New Model ---

- Population/ID space of size |S| = N
- We take uniform samples from S with replacement
- Goal: Find estimator for N

— Previous Model –

- Population/ID space $S = \{1, 2, ..., N\}$
- We take uniform samples from S without replacement
- Goal: Find estimator for N

- New Model -

- Population/ID space of size |S| = N
- We take uniform samples from S with replacement
- Goal: Find estimator for N
- Suppose n = 6, N = 11, $S = \{3, 4, 7, 8, 10, 15.83356, 20, 21, 56, 81, 10000\}$

Previous Model -

- Population/ID space $S = \{1, 2, ..., N\}$
- We take uniform samples from S without replacement
- Goal: Find estimator for N

- New Model -

- Population/ID space of size |S| = N
- We take uniform samples from S with replacement
- Goal: Find estimator for N
- Suppose n = 6, N = 11, $S = \{3, 4, 7, 8, 10, 15.83356, 20, 21, 56, 81, 10000\}$
- Let the sample be

Previous Model -

- Population/ID space S = {1,2,..., N}
- We take uniform samples from S without replacement
- Goal: Find estimator for N

- New Model -

- Population/ID space of size |S| = N
- We take uniform samples from S with replacement
- Goal: Find estimator for N
- Suppose n = 6, N = 11, $S = \{3, 4, 7, 8, 10, 15.83356, 20, 21, 56, 81, 10000\}$
- Let the sample be

Previous Model -

- Population/ID space S = {1,2,...,N}
- We take uniform samples from S without replacement
- Goal: Find estimator for N

- New Model -

- Population/ID space of size |S| = N
- We take uniform samples from S with replacement
- Goal: Find estimator for N
- Suppose n = 6, N = 11, $S = \{3, 4, 7, 8, 10, 15.83356, 20, 21, 56, 81, 10000\}$
- Let the sample be

As we do not know S, our only clue are elements that were sampled twice.

Previous Model -

- Population/ID space $S = \{1, 2, ..., N\}$
- We take uniform samples from S without replacement
- Goal: Find estimator for N

- New Model -

- Population/ID space of size |S| = N
- We take uniform samples from S with replacement
- Goal: Find estimator for N
- Suppose n = 6, N = 11, $S = \{3, 4, 7, 8, 10, 15.83356, 20, 21, 56, 81, 10000\}$
- Let the sample be

Let us call this a **collision**

As we do not know S, our only clue are elements that were sampled twice.

Previous Model

- Population/ID space S = {1,2,..., N}
- We take uniform samples from S without replacement
- Goal: Find estimator for N

New Model belled be

Similar idea applies to situations where elements are not labelled before we see them first time (Mark & Recapture Method)

- Population/ID space of size |S| = N
- We take uniform samples from S with replacement
- Goal: Find estimator for N
- Suppose n = 6, N = 11, $S = \{3, 4, 7, 8, 10, 15.83356, 20, 21, 56, 81, 10000\}$
- Let the sample be

10,81,20,3,81,10000

Let us call this a **collision**

As we do not know \mathcal{S} , our only clue are elements that were sampled twice.

Birthday Problem: Given a set of k people

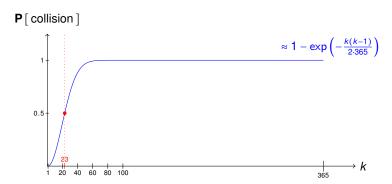
Birthday Problem: Given a set of *k* people

What is the probability of having two with the same birthday (i.e., having at least one collision)?

Birthday Problem: Given a set of *k* people

• What is the probability of having two with the same birthday (i.e., having at least one collision)?

Birthday Problem: Given a set of *k* people


- What is the probability of having two with the same birthday (i.e., having at least one collision)?
- What is the expected number of people one needs to ask until the first collision occurs?

P[collision]

Birthday Problem: Given a set of *k* people

- What is the probability of having two with the same birthday (i.e., having at least one collision)?
- What is the expected number of people one needs to ask until the first collision occurs?

Birthday Problem: Given a set of *k* people

- What is the probability of having two with the same birthday (i.e., having at least one collision)?
- What is the expected number of people one needs to ask until the first collision occurs?

P[collision] $\approx 1 - \exp\left(-\frac{k(k-1)}{2.365}\right)$ Note that $\sqrt{365} \approx 19.10...$

Recall: As we do not know *S*, our only information are **collisions**.

Recall: As we do not know S, our only information are **collisions**.

```
FIND-FIRST-COLLISION(S)

1: C = \emptyset

2: For i = 1, 2, ...

3: Take next i.i.d. sample X_i from S

4: If X_i \notin C then C \leftarrow C \cup \{X_i\}

5: else return T(i)

6: End For
```

Recall: As we do not know S, our only information are **collisions**.

FIND-FIRST-COLLISION(S)

- 1: $C = \emptyset$
- 2: **For** i = 1, 2, ...
- 3: Take next i.i.d. sample X_i from S
- 4: If $X_i \notin C$ then $C \leftarrow C \cup \{X_i\}$
- 5: else return $T(i) \leq$
- 6: End For

T(i) will be the value of the estimator if algo returns after i rounds. (We want T unbiased)

Recall: As we do not know S, our only information are **collisions**.

```
FIND-FIRST-COLLISION(S)
```

- 1: *C* = Ø
- 2: **For** i = 1, 2, ...
- 3: Take next i.i.d. sample X_i from S
- 4: If $X_i \notin C$ then $C \leftarrow C \cup \{X_i\}$
- 5: else return $T(i) \leq$
- 6: End For

T(i) will be the value of the estimator if algo returns after i rounds. (We want T unbiased)

Running Time: The expected time until the algorithm stops is:

Recall: As we do not know *S*, our only information are **collisions**.

```
FIND-FIRST-COLLISION(S)
1: C = \emptyset
2: For i = 1, 2, ...
        Take next i.i.d. sample X_i from S
3:
        If X_i \notin C then C \leftarrow C \cup \{X_i\}
        else return T(i)
5:
                                     T(i) will be the value of the estimator if algo
```

- returns after *i* rounds. (We want *T* unbiased)
 - = the expected number of samples until a collision...

Running Time: The expected time until the algorithm stops is:

6: End For

Recall: As we do not know S, our only information are **collisions**.

```
FIND-FIRST-COLLISION(S)
```

- 1: $C = \emptyset$
- 2: **For** i = 1, 2, ...
- 3: Take next i.i.d. sample X_i from S
- 4: If $X_i \notin C$ then $C \leftarrow C \cup \{X_i\}$
- 5: else return T(i)
- 6: End For

T(i) will be the value of the estimator if algo returns after i rounds. (We want T unbiased)

- Running Time: The expected time until the algorithm stops is:
 - = the expected number of samples until a collision...

Same as the birthday problem, but now with |S| = N days... \odot

Recall: As we do not know S, our only information are **collisions**.

FIND-FIRST-COLLISION(S)

- 1: $C = \emptyset$
- 2: **For** i = 1, 2, ...
- 3: Take next i.i.d. sample X_i from S
- 4: If $X_i \notin C$ then $C \leftarrow C \cup \{X_i\}$
- 5: else return T(i)
- 6: End For

T(i) will be the value of the estimator if algo returns after i rounds. (We want T unbiased)

- Running Time: The expected time until the algorithm stops is:
 - = the expected number of samples until a collision...

Same as the birthday problem, but now with |S| = N days... ©

Expected Running Time (Knuth, Ramanujan)

$$\sqrt{\frac{\pi N}{2}} - \frac{1}{3} + O\left(\frac{1}{\sqrt{N}}\right).$$

Recall: As we do not know S, our only information are **collisions**.

FIND-FIRST-COLLISION(S)

- 1: $C = \emptyset$
- 2: **For** i = 1, 2, ...
- 3: Take next i.i.d. sample X_i from S
- 4: If $X_i \notin C$ then $C \leftarrow C \cup \{X_i\}$
- 5: else return T(i)
- 6: End For

T(i) will be the value of the estimator if algo returns after i rounds. (We want T unbiased)

- Running Time: The expected time until the algorithm stops is:
 - = the expected number of samples until a collision...

Same as the birthday problem, but now with |S| = N days... ©

Expected Running Time (Knuth, Ramanujan)

$$\sqrt{\frac{\pi N}{2}} - \frac{1}{3} + O\left(\frac{1}{\sqrt{N}}\right).$$

Exercise: Prove a bound of $\leq 2 \cdot \sqrt{N}$

Estimation via Collision: Getting the Estimator Unbiased

Example 6	
One can define $T(i)$, $i \in \mathbb{N}$, such that $\mathbf{E}[T] = S $ for any finite, non-empty set S .	
-	Answer —