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Estimating Population Size (First Model)

= Suppose we have a sample of a few serial numbers (IDs) of some product
= We assume IDs are running from 1 to an unknown parameter N (so N = 0)

= Each of the IDs is drawn without replacement from the discrete uniform
distribution over {1,2,...,N}
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Estimating Population Size (First Model)

= Suppose we have a sample of a few serial numbers (IDs) of some product
= We assume IDs are running from 1 to an unknown parameter N (so N = 0)

Each of the IDs is drawn without replacement from the discrete uniform
distribution over {1,2,...,N}

This is also known as Tank Estimation Problem or (Discrete) Taxi Problem

7,3,10,46,14

Warning

= As before, we denote the samples Xi, Xz,..., X,
= Since sampling is without replacement:

= they are not independent! (but identically distributed)
= their number must satisfy n< N
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First Estimator Based on Sample Mean

Example 1

Construct an unbiased estimator T; using the sample mean.

Answer
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First Estimator Based on Sample Mean

Example 1

= The sample mean is

Construct an unbiased estimator T; using the sample mean.

Answer
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Example 1

Construct an unbiased estimator T; using the sample mean.

Answer

= The sample mean is
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First Estimator Based on Sample Mean

Example 1

Construct an unbiased estimator T; using the sample mean.

Answer

= The sample mean is

X, - X1+X2;~~+Xn'

= Linearity of expectation applies (even for dependent random var.!):
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First Estimator Based on Sample Mean

Example 1

Construct an unbiased estimator T; using the sample mean.

Answer

= The sample mean is
X, - X +X2+~~+Xn'
n
= Linearity of expectation applies (even for dependent random var.!):

- ]: nE[X1]
n

E[Xn :E[X1]
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First Estimator Based on Sample Mean

Example 1

Construct an unbiased estimator T; using the sample mean.

Answer

= The sample mean is
X, - X +X2+~~+Xn'
n
= Linearity of expectation applies (even for dependent random var.!):

- ]: nE[X1]
n

E[Xn :E[X1]

I
™M=
==

0
-
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First Estimator Based on Sample Mean

Example 1
Construct an unbiased estimator T; using the sample mean.

Answer

= The sample mean is

X, - X1+X2;~~+Xn'

= Linearity of expectation applies (even for dependent random var.!):

E[Yn]:#[xd:E[Xd
No1N
Ry
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First Estimator Based on Sample Mean

Example 1
Construct an unbiased estimator T; using the sample mean.

Answer

= The sample mean is
X, - X +X2;~~+Xn'

= Linearity of expectation applies (even for dependent random var.!):

(%] ZEL) e

N1 N+t
=Xl N

i=1

= Thus we obtain an unbiased estimator by

T:=2-X,-1.
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Example: Odd Behaviour of T;

= Suppose n=5
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Example: Odd Behaviour of T;

= Suppose n=5
= Let the sample be
7,3,10,46,14
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Example: Odd Behaviour of T;

= Suppose n=5
= Let the sample be

7,3,10,46,14
= The estimator returns:

Ti=2-X,-1=
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= Suppose n=5
= Let the sample be

7,3,10,46,14
= The estimator returns:
Ti=2-X,-1 :2-%—1 =
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Example: Odd Behaviour of T;

= Suppose n=5
= Let the sample be

7,3,10,46,14
= The estimator returns:
Ti=2-X,-1 :2-%—1 =31 ®
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Example: Odd Behaviour of T;

= Suppose n=5
= Let the sample be

7,3,10,46,14
= The estimator returns:
Ti=2-X,-1 :2-%—1 =31 ®
AN

This estimator will often unnecessarily
underestimate the true value N.
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Example: Odd Behaviour of T;

= Suppose n=5
= Let the sample be

7,3,10,46,14
= The estimator returns:
Ti=2-X,-1 :2-%—1 =31 ®
AN

This estimator will often unnecessarily
underestimate the true value N.

\

[ Challenging exercise: Find a lower bound on P[ Ty < max(X1, Xz, ..., Xn) ] ]
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Example: Odd Behaviour of T;

= Suppose n=5
= Let the sample be

7,3,10,46,14
= The estimator returns:
Ti=2-X,-1 :2-%—1 =31 ®
AN

This estimator will often unnecessarily
underestimate the true value N.

\

[ Challenging exercise: Find a lower bound on P[ Ty < max(X1, Xz, ..., Xn) ] ]

= Achieving unbiasedness alone is not a good strategy

= Improvement: find an estimator which always returns a value
at least max(Xiy, Xz, ..., Xn)
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Intuition: Constructing an Estimator based on Maximum Sample

= Suppose n=15
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= Suppose n=15
= Qur samples are:
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Intuition: Constructing an Estimator based on Maximum Sample

= Suppose n=15
= Qur samples are:

9,82,39,35,20,51,54,62,81,29,84,59, 3,34,55

(How much should we add to the maximum? j

1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 8 90 95 100
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Intuition: Constructing an Estimator based on Maximum Sample

= Suppose n=15
= Qur samples are:

9,82,39,35,20,51,54,62,81,29,84,59, 3,34,55

(How much should we add to the maximum? j

P
LN Y
4

1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 8 90 95 100
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Intuition: Constructing an Estimator based on Maximum Sample

= Suppose n=15
= Qur samples are:

9,82,39,35,20,51,54,62,81,29,84,59, 3,34,55

[How much should we add to the maximum? j

P
LN Y

N
4

1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 8 90 95 100

[Rearrange the other 14 points equi-spaced between 0 and 84. ]

\
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Intuition: Constructing an Estimator based on Maximum Sample

= Suppose n=15
= Qur samples are:

9,82,39,35,20,51,54,62,81,29,84,59, 3,34,55

[How much should we add to the maximum? j

. N

=9 N

LN N \\

NN Y X

1 5 10 15 20 25 30 3 40 45 50 55 60 65 70 75 80 8 90 95 100

[Rearrange the other 14 points equi-spaced between 0 and 84. ]
\] .
—A———r

—to———————e————to— ———————fo————o+————F——+—— X

1 5 10 15 20 25 30 3 40 45 50 55 60 65 70 75 80 85 90 95 100

[This suggests 84 + 6 = 90 as the estimate! j
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Intuition: Constructing an Estimator based on Maximum Sample

= Suppose n=15
= Qur samples are:

9,82,39,35,20,51,54,62,81,29,84,59, 3,34,55

[How much should we add to the maximum? j

. N
L - Y
&1 AN N
SN N Y

o ———————e1—es—e ——to—e¢—oto———+——|——teeof ————— X

1 5 10 15 20 25 30 3 40 45 50 55 60 65 70 75 80 8 90 95 100

[Rearrange the other 14 points equi-spaced between 0 and 84. ]
\] .
—A———r

—to———————e————to— ———————fo— o ———————— X

1 5 10 15 20 25 30 3 40 45 50 55 60 65 70 75 80 85 90 95 100

[max(X1 yeeey Xn) + T2 o) }[This suggests 84 + 6 = 90 as the estimate! j
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Deriving the Estimator Based on Maximum Sample

Example 2

Construct an unbiased estimator T, using max(Xi, ..., Xn)

Answer
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Deriving the Estimator Based on Maximum Sample

Example 2
Construct an unbiased estimator T, using max(Xi, ..., Xn)

Answer

= Calculate expectation of the maximum (for details see Dekking et al.)

E[max(Xi,...,Xn) ] =
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Deriving the Estimator Based on Maximum Sample

Example 2

Construct an unbiased estimator T, using max(Xi, ..., Xn)

Answer

= Calculate expectation of the maximum (for details see Dekking et al.)

E[max(Xi,...,Xn) ] =

6 6 N
,-M,-w o

1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
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Deriving the Estimator Based on Maximum Sample

Example 2

Construct an unbiased estimator T, using max(Xi, ..., Xn)

Answer

= Calculate expectation of the maximum (for details see Dekking et al.)

E[max(Xi,...,Xn) ] =

[Equi-spaced configuration would suggest max(Xi, ..., Xn) ~ % . N]
— 6 6N
——
,-*w P

1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
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Deriving the Estimator Based on Maximum Sample

Example 2

Construct an unbiased estimator T, using max(Xi, ..., Xn)

Answer

= Calculate expectation of the maximum (for details see Dekking et al.)

n n n

E[max(Xi,...,Xp) ] =...= T -N+n+1 ==

(N+1).

[Equi-spaced configuration would suggest max(Xi, ..., Xn) ~ % . N]
— 6 6N

/-M,-w o

1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
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Deriving the Estimator Based on Maximum Sample

Example 2
Construct an unbiased estimator T, using max(Xi, ..., Xn)

Answer

= Calculate expectation of the maximum (for details see Dekking et al.)

= Hence we obtain an unbiased estimator by

7_2::n+1

n n n
E X ,X = ... = . + = 5 N+‘|
[max (3, "] n+1 n+1 n+1 ( )
[Equi-spaced configuration would suggest max(Xs,...,Xn) ~ % . N]
TN 6 6N
/-'\,-w o

1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

T-max(X17...,X,,)—1.
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Deriving the Estimator Based on Maximum Sample

Example 2
Construct an unbiased estimator T, using max(Xi, ..., Xn)

Answer

= Calculate expectation of the maximum (for details see Dekking et al.)
n n n
E[max(Xi,...,Xp) ] =...= 3 -N + PR (N +1).

— 6 6N
—

[Equi-spaced configuration would suggest max(Xi, ..., Xn) ~ % N]

1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
= Hence we obtain an unbiased estimator by
n+1
T ::T-max(X1,...,Xn)—1.

= For our samples before, we get f, = % -84 -1=288.6.
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Empirical Analysis of the two Estimators

T T2
0.008 — 0.008 —
0.006 — 0.006 —
0.004 — 0.004 —
0.002 — 0.002 —
0- 0-
| I I I | | I | 1 |
300 700 N = 1000 1300 1600 300 700 N = 1000 1300

Source: Modern Introduction to Statistics

Figure: Histogram of 2000 values for Ty and T,, when N = 1000 and n = 10.
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Empirical Analysis of the two Estimators

T Tz
0.008 — 0.008 —
0.006 — 0.006 —
0.004 — 0.004 —
0.002 — 0.002 —
0 - 0 -
[ T I 1 [ T I 1
300 700 N = 1000 1300 1600 300 700 N = 1000 1300 1600

Source: Modern Introduction to Statistics

Figure: Histogram of 2000 values for Ty and T,, when N = 1000 and n = 10.

[Can we find a quantity that captures the superiority of T, over 7'1?]
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Mean Squared Error

Mean Squared Error Definition

Let T be an estimator for a parameter . The mean squared error of T is

MSE[T]=E[(T-0)*].
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Mean Squared Error

Mean Squared Error Definition
Let T be an estimator for a parameter . The mean squared error of T is

MSE[T]=E[(T-0)*].

= According to this, estimator T; better than T if MSE[ T1 ] < MSE[ T3 ].
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Mean Squared Error

Mean Squared Error Definition
Let T be an estimator for a parameter . The mean squared error of T is

MSE[T]=E[(T-0)*].

= According to this, estimator T; better than T if MSE[ T1 ] < MSE[ T3 ].

Bias-Variance Decomposition

The mean squared error can be decomposed into:
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Mean Squared Error Definition
Let T be an estimator for a parameter . The mean squared error of T is

MSE[T]=E[(T-0)*].

= According to this, estimator T; better than T if MSE[ T1 ] < MSE[ T3 ].

Bias-Variance Decomposition
The mean squared error can be decomposed into:

MSE[T]=(E[T]-6)°+ V[T]
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Mean Squared Error

Mean Squared Error Definition
Let T be an estimator for a parameter . The mean squared error of T is

MSE[T]=E[(T-0)*].

= According to this, estimator T; better than T if MSE[ T1 ] < MSE[ T3 ].

Bias-Variance Decomposition
The mean squared error can be decomposed into:

MSE[T]=(E[T]-6)°+ V[T]
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Mean Squared Error

Mean Squared Error Definition
Let T be an estimator for a parameter . The mean squared error of T is

MSE[T]=E[(T-0)*].

= According to this, estimator T; better than T if MSE[ T1 ] < MSE[ T3 ].

Bias-Variance Decomposition
The mean squared error can be decomposed into:

MSE[T]=(E[T]-6)°+ V[T]
= Bias? = Variance
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Mean Squared Error

Mean Squared Error Definition
Let T be an estimator for a parameter . The mean squared error of T is

MSE[T]=E[(T-0)*].

= According to this, estimator T; better than T if MSE[ T1 ] < MSE[ T3 ].

Bias-Variance Decomposition
The mean squared error can be decomposed into:

MSE[T]=(E[T]-6)°+ V[T]
= Bias? = Variance

= If Ty and T, are both unbiased, T; is betterthan T, iff V[ T; | < V[ T2 ].

Intro to Probability Mean Squared Error 10



Bias-Variance Decomposition: Derivation

Example 3
We need to prove: MSE[ T]=(E[T]-60)®+V[T].

Answer
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Bias-Variance Decomposition: Derivation

Example 3

MSE[T]-E[(T-0)]

We need to prove: MSE[ T]=(E[T]-60)®+V[T].

Answer
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Bias-Variance Decomposition: Derivation

Example 3

MSE[T]-E[(T-0)]

:E[T2—2T0+92]

We need to prove: MSE[ T]=(E[T]-60)®+V[T].

Answer
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Bias-Variance Decomposition: Derivation

Example 3
We need to prove: MSE[ T]=(E[T]-60)®+V[T].

Answer

MSE[T]-E[(T-0)]
E[T°-2T0+6" |
~E[T]-2-E[T]-0+6°+E[T?|-E[T]
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Bias-Variance Decomposition: Derivation

Example 3
We need to prove: MSE[ T]=(E[T]-60)®+V[T].

Answer

MSE [ [(T % ]

-E
E[T2—2T0+6]
E
=(E

[T} -2-E[T]-0+6°+E[T*|-E[T]
[T]1-6)°+V[T].
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Bias-Variance Decomposition: lllustration

Low Variance

Low Bias

High Bias

Source: Edwin Leuven (Point Estimation)
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Example 4

It holds that MSE[E]:@(NTz),where Ti=2-X,-1.

Answer
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Example 4
It holds that MSE[ T; ] = e(N;), where Ty =2- X, - 1.

Answer

® Since Ty is unbiased, MSE[ T; ] = (E[ Ty ]-6)>+V[T;]=V[Ty],and
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Example 4

It holds that MSE[m:e(N;),where Ti=2-X,-1.

Answer

® Since Ty is unbiased, MSE[ T; ] = (E[ Ty ]-6)>+V[T;]=V[Ty],and

V[T1]=v[2.Yn-1]=4-v[Yn]=%.V[x1+-..+xn]
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Example 4

It holds that MSE[m:e(N;),where Ti=2-X,-1.

Answer
= Since Ty is unbiased, MSE[T; ] = (E[T;]-0)2+V[T;]=V[T; ], and
- - 4
V[T1]=V[2.X,,—1]=4-V[X,,]=?~V[X1+--~+X,,]

= Note: The X;’s are not independent!
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Example 4

It holds that MSE[m:e(N;),where Ti=2-X,-1.

Answer

® Since Ty is unbiased, MSE[ T; ] = (E[ Ty ]-6)>+V[T;]=V[Ty],and

= = 4
V[T1]=v[2.xn-1]=4-v[xn] = 5 VXt X]
= Note: The X;’s are not independent!
= Use generalisation of V[ X; + Xo ] = V[ X; ]+ V[ Xz ] +2-Cov [ Xy, Xz ] (Exercise
Sheet) to nr.v’s, and then that the Xj’s are identically distributed, and also the (X;, X;),
i+ j:
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Example 4

It holds that MSE[m:e(N;),where Ti=2-X,-1.

Answer
® Since Ty is unbiased, MSE[ T; ] = (E[ Ty ]-6)>+V[T;]=V[Ty],and
= = 4
V[T1]=V[2-X,,—1]=4-V[X,,]=?~V[X1+--~+X,,]
= Note: The X;’s are not independent!
= Use generalisation of V[ X; + Xo ] = V[ X; ]+ V[ Xz ] +2-Cov [ Xy, Xz ] (Exercise

Sheet) to nr.v’s, and then that the Xj’s are identically distributed, and also the (X;, X;),
i+

VIXi ot Xa] = 2V [X 1423 3 Cov[X.X]

i=1 i=1 j=i+1

=n-V[X1]+2(Z)-Cov[X1,X2].
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Example 4

It holds that MSE[m:e(N;),where Ti=2-X,-1.

Answer
® Since Ty is unbiased, MSE[ T; ] = (E[ Ty ]-6)>+V[T;]=V[Ty],and
= = 4
V[T1]=V[2-X,,—1]=4-V[X,,]=?~V[X1+--~+X,,]
= Note: The X;’s are not independent!
= Use generalisation of V[ X; + Xo ] = V[ X; ]+ V[ Xz ] +2-Cov [ Xy, Xz ] (Exercise

Sheet) to nr.v’s, and then that the Xj’s are identically distributed, and also the (X;, X;),
i+

VIXi ot Xa] = 2V [X 1423 3 Cov[X.X]

i=1 i=1 j=i+1

=n-V[X1]+2(Z)-Cov[X1,X2].

= By definition of the discrete uniform distribution, V[ X; ] = W
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Example 4

It holds that MSE[E]:@(NTZ),where Ti=2-X,-1.

Answer
Since Ty is unbiased, MSE[ T ] = (E[ Ty ] -6)2+V[T;]=V[T; ], and
= = 4
V[T1]=V[2-Xn—1]=4-V[X,,] = 5 VXt X]
Note: The X;’s are not independent!
Use generalisation of V[ X; + X ] =V [ X; ]+ V[ Xa ] +2-Cov [ Xi, Xz ] (Exercise

Sheet) to nr.v’s, and then that the Xj’s are identically distributed, and also the (X;, X;),
i+

n n n
VX4 X ] =3 VX]+23 3 Cov[X, X ]
i=1 i=1 j=i+1
=n-V[X1]+2(Z)-Cov[X1,X2].

By definition of the discrete uniform distribution, V[ X | = W

Intuitively, X; and X are negatively correlated, which would be sufficient to complete
the proof. For a more rigorous and precise derivation (see Dekking et al.):

Cov[X1,X2]=—11—2(N+1).
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Example 4

It holds that MSE[E]:@(NTZ),where Ti=2-X,-1.

Answer
Since Ty is unbiased, MSE[ T ] = (E[ Ty ] -6)2+V[T;]=V[T; ], and
= = 4
V[T1]=V[2-Xn—1]=4-V[X,,] = 5 VXt X]
Note: The Xj’s are not independent!
Use generalisation of V[ X; + X ] =V [ X; ]+ V[ Xa ] +2-Cov [ Xi, Xz ] (Exercise

Sheet) to nr.v’s, and then that the Xj’s are identically distributed, and also the (X;, X;),
i+
n n n
VX ++ X 1= D2 VIX]+2> > Cov[X,,X,]

i=1 i=1 j=i+1

=n-V[X1]+2(Z)-Cov[X1,X2].

By definition of the discrete uniform distribution, V[ X | = W
Intuitively, X; and X are negatively correlated, which would be sufficient to complete
the proof. For a more rigorous and precise derivation (see Dekking et al.):
1
Cov[ X, Xz] =_ﬁ(N+1)'

Rearranging and simplifying gives
_ (N+1)(N-n)

vITi] B
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Analysis of the MSE for T, (non-examinable)

Example 5

It holds that MSE[ > ] = © (%), where T, = 21 - max(X;,

Answer

X)) 1.
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Analysis of the MSE for T, (hon-examinable)
Example 5

It holds that MSE[ > ] = © (%), where T = 221 - max(X;, ..., X;) — 1.

Answer
= T, is unbiased = need V[ T ] which reduces to V[ max(Xj,
= One can prove: [For details see Dekking et al. J

V[max(X1,,..,Xn)]:--V-— NN+ 1)(N - n) —e(Nz)

LX) ]

T (n+2)(n+1)2 T\ m

[Equi—spaced (idealised) configuration suggests a standard deviation of o ~ %

u—a\\ I3 N=N+0o

X
70 75 80 85 90 95 100
=z

[Maximum could have equally likely taken any value between 79 and 90 ]
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Analysis of the MSE for T, (hon-examinable)
Example 5

It holds that MSE[ 7] = © (%

Answer

= T, is unbiased = need V[ T ] which reduces to V[ max(Xj,

),where To= ™1 max(Xy, ..., Xp) — 1.

= One can prove:

[For details see Dekking et al. J

LX) ]

V' onN+1)(N=n) N2
V[max(X1,...,Xn)]:~--:W:e(?)

[Equi—spaced (idealised) configuration suggests a standard deviation of o ~
n—o \\ "

80
=z

[Maximum could have equally likely taken any value between 79 and 90 ]

N2
7)o e
= = confirms simulations suggesting that T, is better than T;!

= can be shown T is the best unbiased estimator, i.e., it minimises MSE.

N
n

N=p+o

X
70 75 85 LY 95 100

- MSE[ T2 ] is much lower than MSE [ T; ] = © ( MSE[T;] - nt2

3
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Outline

Estimating Population Size (Second Model)

Intro to Probability Estimating Population Size (Second Model)



A New Estimation Problem

Previous Model
= Population/ID space S={1,2,...,N}

= We take uniform samples from S without replacement
= Goal: Find estimator for N
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A New Estimation Problem

Previous Model
= Population/ID space S={1,2,...,N}

= We take uniform samples from S without replacement
= Goal: Find estimator for N

New Model

= Population/ID space of size |S| = N
= We take uniform samples from S with replacement
= Goal: Find estimator for N
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A New Estimation Problem

Previous Model

= Population/ID space S={1,2,...,N}
= We take uniform samples from S without replacement
= Goal: Find estimator for N

New Model

= Population/ID space of size |S| = N
= We take uniform samples from S with replacement
= Goal: Find estimator for N

= Suppose n=6, N=11, S={3,4,7,8,10,15.83356,20,21,56,81,10000}
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A New Estimation Problem

Previous Model

= Population/ID space S={1,2,...,N}
= We take uniform samples from S without replacement

= Goal: Find estimator for N

New Model

= Population/ID space of size |S| = N
= We take uniform samples from S with replacement
= Goal: Find estimator for N

= Suppose n=6, N=11, S={3,4,7,8,10,15.83356, 20,21,56,81, 10000}
= Let the sample be
10,81,20, 3,81, 10000
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A New Estimation Problem

Previous Model

= Population/ID space S={1,2,...,N}
= We take uniform samples from S without replacement

= Goal: Find estimator for N

New Model

= Population/ID space of size |S| = N
= We take uniform samples from S with replacement
= Goal: Find estimator for N

= Suppose n=6, N=11, S={3,4,7,8,10,15.83356, 20,21,56,81, 10000}
= Let the sample be
10,81,20,3,81,10000
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A New Estimation Problem

Previous Model
= Population/ID space S={1,2,...,N}

= We take uniform samples from S without replacement
= Goal: Find estimator for N

New Model
= Population/ID space of size |S| = N
= We take uniform samples from S with replacement

= Goal: Find estimator for N

= Suppose n=6, N=11, S={3,4,7,8,10,15.83356, 20,21,56,81, 10000}
= Let the sample be
10,81,20,3,81,10000

As we do not know S, our only clue are elements that were sampled twice.

Intro to Probability Estimating Population Size (Second Model) 16




A New Estimation Problem

Previous Model
= Population/ID space S={1,2,...,N}
= We take uniform samples from S without replacement

= Goal: Find estimator for N

New Model
= Population/ID space of size |S| = N
= We take uniform samples from S with replacement

= Goal: Find estimator for N

= Suppose n=6, N=11, S={3,4,7,8,10,15.83356, 20,21,56,81, 10000}
= Let the sample be
10,81,20,3,81,10000

Let us call this a collision

V
As we do not know S, our only clue are elements that were sampled twice.
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A New Estimation Problem

Previous Model
= Population/ID space S={1,2,...,N}
= We take uniform samples from S without replacement

= Goal: Find estimator for N
Similar idea applies to situations where elements are not la- ]

belled before we see them first time (Mark & Recapture Method)
[

New Model
= Population/ID space of size |S| = N
= We take uniform samples from S with replacement

= Goal: Find estimator for N

= Suppose n=6, N=11, S={3,4,7,8,10,15.83356, 20,21,56,81, 10000}
= Let the sample be
10,81,20,3,81,10000

Let us call this a collision

V
As we do not know S, our only clue are elements that were sampled twice.
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Birthday Problem

Birthday Problem: Given a set of k people
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Birthday Problem

Birthday Problem: Given a set of k people
= What is the probability of having two with the same birthday (i.e.,

having at least one collision)?
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Birthday Problem

Birthday Problem: Given a set of k people
= What is the probability of having two with the same birthday (i.e.,

having at least one collision)?

P [ collision ]
K(k=1
~1—exp (’ 2(-365))
1
0.5
, , |
1 20 40 60 80 100 65 k
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Birthday Problem

Birthday Problem: Given a set of k people
= What is the probability of having two with the same birthday (i.e.,

having at least one collision)?

= What is the expected number of people one needs to ask until the first
collision occurs?

P [ collision ]
K(k=1
~1—exp (’ 2(-365>)
1
0.5
, , |
1 20 40 60 80 100 65 k
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Birthday Problem

Birthday Problem: Given a set of k people
= What is the probability of having two with the same birthday (i.e.,

having at least one collision)?

= What is the expected number of people one needs to ask until the first
collision occurs?

P [ collision ]
k(k-1
~1—exp (’ 2(-365>)
1
0.5
23
T . . . |
R P Lk
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Birthday Problem

Birthday Problem: Given a set of k people
= What is the probability of having two with the same birthday (i.e.,

having at least one collision)?

= What is the expected number of people one needs to ask until the first
collision occurs?

P [ collision ]

~1-exp (f kz(g;? )

0.5

<Note that /365 ~ 19.10... ]

2 | k

120 40 60 80 100 365
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Estimation via Collision: The Algorithm

[Recall: As we do not know S, our only information are collisions. j
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Estimation via Collision: The Algorithm

[Recall: As we do not know S, our only information are collisions. j

FIND-FIRST-COLLISION(S)
:C=0
:Fori=12,...
Take next i.i.d. sample X; from S
If Xi ¢ Cthen C~ Cu{X;}
else return T (/)
: End For

Qg s wn
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Estimation via Collision: The Algorithm

[Recall: As we do not know S, our only information are collisions. j

FIND-FIRST-COLLISION(S)
:C=0
:Fori=12,...
Take next i.i.d. sample X; from S
If Xi ¢ Cthen C~ Cu{X;}

: else return T(/ . .
. End For () T (i) will be the value of the estimator if algo
' returns after / rounds. (We want T unbiased)

oo N wN =
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Estimation via Collision: The Algorithm

[Recall: As we do not know S, our only information are collisions. j

FIND-FIRST-COLLISION(S)
:C=0
:Fori=12,...
Take next i.i.d. sample X; from S
If Xi ¢ Cthen C~ Cu{X;}

: else return T(/ . .
. End For () T (i) will be the value of the estimator if algo
' returns after / rounds. (We want T unbiased)

oo N wN =

Running Time: The expected time until the algorithm stops is:
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Estimation via Collision: The Algorithm

[Recall: As we do not know S, our only information are collisions. j

FIND-FIRST-COLLISION(S)

C=0

:Fori=12,...

Take next i.i.d. sample X; from S
If Xi ¢ Cthen C~ Cu{X;}

: else return T(/ . .
. End For () T (i) will be the value of the estimator if algo
' returns after / rounds. (We want T unbiased)

= Running Time: The expected time until the algorithm stops is:
= the expected number of samples until a collision...
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Estimation via Collision: The Algorithm

[Recall: As we do not know S, our only information are collisions. j

FIND-FIRST-COLLISION(S)

C=0

:Fori=12,...

Take next i.i.d. sample X; from S
If Xi ¢ Cthen C~ Cu{X;}

: else return T(/ . .
. End For () T (i) will be the value of the estimator if algo
' returns after / rounds. (We want T unbiased)

= Running Time: The expected time until the algorithm stops is:
= the expected number of samples until a collision...
)

[Same as the birthday problem, but now with |S| = N days... ® ]
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Estimation via Collision: The Algorithm

[Recall: As we do not know S, our only information are collisions. j

FIND-FIRST-COLLISION(S)

C=0

:Fori=12,...

Take next i.i.d. sample X; from S
If Xi ¢ Cthen C~ Cu{X;}

: else return T(/ . .
. End For () T (i) will be the value of the estimator if algo
' returns after / rounds. (We want T unbiased)

= Running Time: The expected time until the algorithm stops is:
= the expected number of samples until a collision...
)

[Same as the birthday problem, but now with |S| = N days... ® ]

Expected Running Time (Knuth, Ramanujan)
N 1 1
—--+0|—|.
s 5 ()
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Estimation via Collision: The Algorithm

[Recall: As we do not know S, our only information are collisions. j

FIND-FIRST-COLLISION(S)

C=0

:Fori=12,...

Take next i.i.d. sample X; from S
If Xi ¢ Cthen C~ Cu{X;}

: else return T(/
. End For () T (i) will be the value of the estimator if algo
' returns after / rounds. (We want T unbiased)

= Running Time: The expected time until the algorithm stops is:

= the expected number of samples until a collision...
)

[Same as the birthday problem, but now with |S| = N days... ® ]
Expected Running Time (Knuth, Ramanujan)
N 1 1
3ol |
\/N ~
(
| Exercise: Prove a bound of < 2- VN ]
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Estimation via Collision: Getting the Estimator Unbiased

Example 6

One can define T(i), i e N, such that E[ T ] = |S| for any finite,
non-empty set S.

Answer
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Estimation via Collision: Getting the Estimator Unbiased

Example 6

One can define T(i), i e N, such that E[ T ] = |S| for any finite,
non-empty set S.

Answer

= We outline a construction by induction.
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Estimation via Collision: Getting the Estimator Unbiased

Example 6

One can define T(i), i e N, such that E[ T ] = |S| for any finite,
non-empty set S.

Answer

= We outline a construction by induction.
= Case |S| = 1: Algo always stops after / = 2 rounds and returns T(2).
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Estimation via Collision: Getting the Estimator Unbiased

Example 6

One can define T(i), i e N, such that E[ T ] = |S| for any finite,
non-empty set S.

Answer

= We outline a construction by induction.
= Case |S| = 1: Algo always stops after / = 2 rounds and returns T(2).
We want
1=E[T]=T(2)
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Estimation via Collision: Getting the Estimator Unbiased

Example 6

One can define T(i), i e N, such that E[ T ] = |S| for any finite,
non-empty set S.

Answer

= We outline a construction by induction.
= Case |S| = 1: Algo always stops after / = 2 rounds and returns T(2).
We want
1=E[T]=T(2) = T(2)=1.
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Estimation via Collision: Getting the Estimator Unbiased

Example 6

One can define T(i), i e N, such that E[ T ] = |S| for any finite,
non-empty set S.

Answer

= We outline a construction by induction.
= Case |S| = 1: Algo always stops after / = 2 rounds and returns T(2).
We want
1=E[T]=T(2) = T(2)=1.

= Case |S| = 2: Algo stops after 2 or 3 rounds (w.p. 1/2 each).
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Estimation via Collision: Getting the Estimator Unbiased

Example 6

One can define T(i), i e N, such that E[ T ] = |S| for any finite,
non-empty set S.

Answer

= We outline a construction by induction.
= Case |S| = 1: Algo always stops after / = 2 rounds and returns T(2).
We want
1=E[T]=T(2) = T(2)=1.

= Case |S| = 2: Algo stops after 2 or 3 rounds (w.p. 1/2 each).
We want

2-E[T]-= ‘T(2)+%~T(3)

N =
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Estimation via Collision: Getting the Estimator Unbiased

Example 6

One can define T(i), i e N, such that E[ T ] = |S| for any finite,
non-empty set S.

Answer

= We outline a construction by induction.
= Case |S| = 1: Algo always stops after / = 2 rounds and returns T(2).
We want
1=E[T]=T(2) = T(2)=1.

= Case |S| = 2: Algo stops after 2 or 3 rounds (w.p. 1/2 each).
We want

2-E[T]- «T(2)+%-T(3) -  T(3)-3.

N =
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Estimation via Collision: Getting the Estimator Unbiased

Example 6

non-empty set S.

One can define T(i), i e N, such that E[ T ] = |S| for any finite,

We want

We want

2-E[T]-=

Answer

= We outline a construction by induction.
= Case |S| = 1: Algo always stops after / = 2 rounds and returns T(2).

1=-E[T]=T(2 = T@)-=1.

= Case |S| = 2: Algo stops after 2 or 3 rounds (w.p. 1/2 each).

1

1
o T(2)+ o T(3) = T(3)=3.

» Case [S|=3:gives3=E[T]=1-T(2)+3-T(3)+%-T(4)
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Estimation via Collision: Getting the Estimator Unbiased

Example 6

One can define T(i), i e N, such that E[ T ] = |S| for any finite,
non-empty set S.

Answer

= We outline a construction by induction.
= Case |S| = 1: Algo always stops after / = 2 rounds and returns T(2).
We want
1=E[T]=T(2) = T(2)=1.

= Case |S| = 2: Algo stops after 2 or 3 rounds (w.p. 1/2 each).
We want

i

2

» Case [S|=3:gives3=E[T]=1-T(2)+3-T(3)+%-T(4)
= T(4) =6, similarly, T(5) = 10 etc.

2-E[T]- T(2)+%-T(3) -  T(3)-3.
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Estimation via Collision: Getting the Estimator Unbiased

Example 6

One can define T(i), i e N, such that E[ T ] = |S| for any finite,
non-empty set S.

Answer

= We outline a construction by induction.
Case |S| = 1: Algo always stops after i = 2 rounds and returns T(2).
We want

1=-E[T]=T(2 = T@)-=1.

Case |S| = 2: Algo stops after 2 or 3 rounds (w.p. 1/2 each).
We want
i
2
» Case [S|=3:gives3=E[T]=1-T(2)+3-T(3)+%-T(4)

= T(4) =6, similarly, T(5) = 10 etc.
= can continue to define T (/) inductively in this way (note T is unique)

2-E[T]- T(2)+%-T(3) -  T(3)-3.
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Estimation via Collision: Getting the Estimator Unbiased

Example 6

non-empty set S.

= We outline a construction by induction.

We want
1=E[T]=T(2) =

We want

1

2=E[T]=3"

T(2)+ 5 T(@)

= T(4) =6, similarly, T(5) =10 etc.

(a proof that T (i) = (}) is harder)

One can define T(i), i €N, suchthat E[ T ] =|S] for any finite,

Answer

Case |S| = 1: Algo always stops after i = 2 rounds and returns T(2).

T(2)=1.

=

Case |S| = 2: Algo stops after 2 or 3 rounds (w.p. 1/2 each).

T(3) = 3.

» Case [S|=3:gives3=E[T]=1-T(2)+3-T(3)+%-T(4)

= can continue to define T (/) inductively in this way (note T is unique)
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