Introduction to Probability

Lecture 11: Estimators (Part II) Mateja Jamnik, <u>Thomas Sauerwald</u>

University of Cambridge, Department of Computer Science and Technology email: {mateja.jamnik,thomas.sauerwald}@cl.cam.ac.uk

Easter 2025

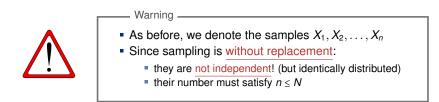
Compiled: May 18, 2025 at 19:51

Mean Squared Error

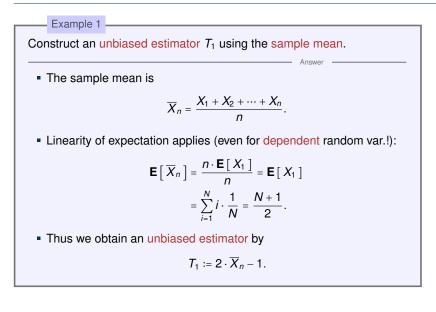
Estimating Population Size (Second Model)

- Suppose we have a sample of a few serial numbers (IDs) of some product
- We assume IDs are running from 1 to an unknown parameter N (so $N = \theta$)
- Each of the IDs is drawn without replacement from the discrete uniform distribution over {1,2,...,N}
- This is also known as Tank Estimation Problem or (Discrete) Taxi Problem

7, 3, 10, 46, 14



First Estimator Based on Sample Mean



- Suppose n = 5
- Let the sample be

$$7, 3, 10, \frac{46}{14}, 14$$

The estimator returns:

$$T_1 = 2 \cdot \overline{X}_n - 1 = 2 \cdot \frac{80}{5} - 1 = 31 \quad \textcircled{B}$$
This estimator will often unnecessarily
underestimate the true value *N*.
Illenging exercise: Find a lower bound on **P**[$T_1 < \max(X_1, X_2, \dots, X_n)$]

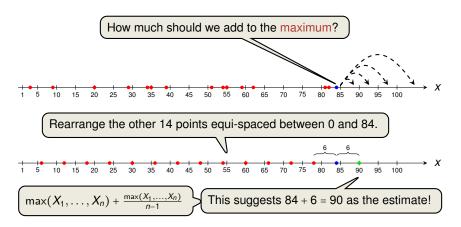
- Achieving unbiasedness alone is not a good strategy
- Improvement: find an estimator which always returns a value at least max(X₁, X₂,..., X_n)

Cha

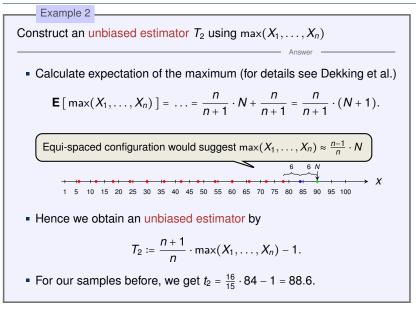
Intuition: Constructing an Estimator based on Maximum Sample

- Suppose *n* = 15
- Our samples are:

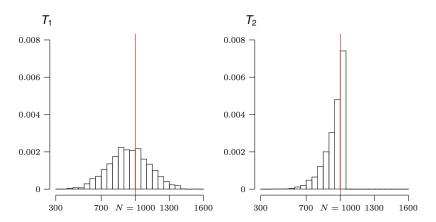
 $9, 82, 39, 35, 20, 51, 54, 62, 81, 29, {\color{red}84}, 59, 3, 34, 55$



Deriving the Estimator Based on Maximum Sample



Empirical Analysis of the two Estimators



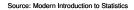


Figure: Histogram of 2000 values for T_1 and T_2 , when N = 1000 and n = 10.

Can we find a quantity that captures the superiority of T_2 over T_1 ?

Intro to Probability

Mean Squared Error

Estimating Population Size (Second Model)

Mean Squared Error

Mean Squared Error Definition —

Let T be an estimator for a parameter θ . The mean squared error of T is

$$\mathsf{MSE}[T] = \mathsf{E}\Big[(T-\theta)^2\Big].$$

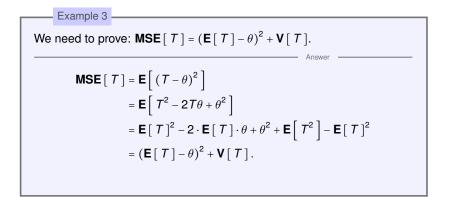
• According to this, estimator T_1 better than T_2 if **MSE** $[T_1] <$ **MSE** $[T_2]$.

Bias-Variance Decomposition
The mean squared error can be decomposed into:

$$MSE[T] = (E[T] - \theta)^{2} + V[T]$$

$$= Bias^{2} = Variance$$

• If T_1 and T_2 are both unbiased, T_1 is better than T_2 iff $\mathbf{V}[T_1] < \mathbf{V}[T_2]$.



Bias-Variance Decomposition: Illustration



Source: Edwin Leuven (Point Estimation)

Example 4

It holds that **MSE**
$$[T_1] = \Theta\left(\frac{N^2}{n}\right)$$
, where $T_1 = 2 \cdot \overline{X}_n - 1$.

- Since T_1 is unbiased, **MSE** $[T_1] = (\mathbf{E}[T_1] \theta)^2 + \mathbf{V}[T_1] = \mathbf{V}[T_1]$, and $\mathbf{V}[T_1] = \mathbf{V}[2 \cdot \overline{X}_n - 1] = 4 \cdot \mathbf{V}[\overline{X}_n] = \frac{4}{n^2} \cdot \mathbf{V}[X_1 + \dots + X_n]$
- Note: The X_i's are not independent!
- Use generalisation of V [X₁ + X₂] = V [X₁] + V [X₂] + 2 ⋅ Cov [X₁, X₂] (Exercise Sheet) to *n* r.v.'s, and then that the X_i's are identically distributed, and also the (X_i, X_j), *i* ≠ *j*:

$$\mathbf{V} \begin{bmatrix} X_1 + \dots + X_n \end{bmatrix} = \sum_{i=1}^n \mathbf{V} \begin{bmatrix} X_i \end{bmatrix} + 2\sum_{i=1}^n \sum_{j=i+1}^n \mathbf{Cov} \begin{bmatrix} X_i, X_j \end{bmatrix}$$
$$= n \cdot \mathbf{V} \begin{bmatrix} X_1 \end{bmatrix} + 2\binom{n}{2} \cdot \mathbf{Cov} \begin{bmatrix} X_1, X_2 \end{bmatrix}.$$

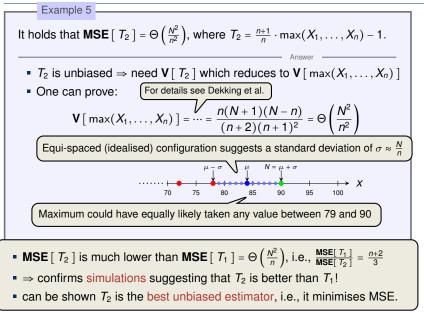
- By definition of the discrete uniform distribution, $\mathbf{V}[X_1] = \frac{(N+1)(N-1)}{12}$
- Intuitively, X₁ and X₂ are negatively correlated, which would be sufficient to complete the proof. For a more rigorous and precise derivation (see Dekking et al.):

Cov
$$[X_1, X_2] = -\frac{1}{12}(N+1).$$

Rearranging and simplifying gives

$$\mathbf{V}\left[T_1\right] = \frac{(N+1)(N-n)}{3n}$$

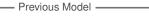
Analysis of the MSE for T_2 (non-examinable)



Mean Squared Error

Estimating Population Size (Second Model)

A New Estimation Problem



- Population/ID space S = {1, 2, ..., N}
- We take uniform samples from S without replacement
- Goal: Find estimator for N

Similar idea applies to situations where elements are not labelled before we see them first time (Mark & Recapture Method)

New Model

- Population/ID space of size |S| = N
- We take uniform samples from S with replacement
- Goal: Find estimator for N
- Suppose n = 6, N = 11, S = {3,4,7,8,10,15.83356,20,21,56,81,10000}
- Let the sample be

10, 81, 20, 3, 81, 10000

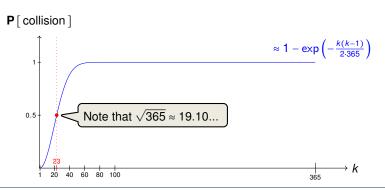
Let us call this a **collision**

As we do not know S, our only clue are elements that were sampled twice.

Birthday Problem

Birthday Problem: Given a set of k people

- What is the probability of having two with the same birthday (i.e., having at least one collision)?
- What is the expected number of people one needs to ask until the first collision occurs?



Estimation via Collision: The Algorithm

Recall: As we do not know S, our only information are collisions.

FIND-FIRST-COLLISION(S)

- 1: *C* = ∅
- 2: **For** *i* = 1, 2, . . .
- 3: Take next i.i.d. sample X_i from S
- 4: If $X_i \notin C$ then $C \leftarrow C \cup \{X_i\}$
- 5: else return T(i)
- 6: End For

T(i) will be the value of the estimator if algo returns after *i* rounds. (We want *T* unbiased)

• Running Time: The expected time until the algorithm stops is:

= the expected number of samples until a collision...

Same as the birthday problem, but now with |S| = N days... \odot

Expected Running Time (Knuth, Ramanujan)

$$\sqrt{\frac{\pi N}{2}} - \frac{1}{3} + O\left(\frac{1}{\sqrt{N}}\right).$$
Exercise: Prove a bound of $\leq 2 \cdot \sqrt{N}$

Estimation via Collision: Getting the Estimator Unbiased

Example 6

One can define T(i), $i \in \mathbb{N}$, such that $\mathbf{E}[T] = |S|$ for any finite, non-empty set S.

- We outline a construction by induction.
- Case |S| = 1: Algo always stops after i = 2 rounds and returns T(2).
 We want

$$1 = \mathbf{E} [T] = T(2) \qquad \Rightarrow \qquad T(2) = 1.$$

Case |S| = 2: Algo stops after 2 or 3 rounds (w.p. 1/2 each).
 We want

$$2 = \mathbf{E} \begin{bmatrix} T \end{bmatrix} = \frac{1}{2} \cdot T(2) + \frac{1}{2} \cdot T(3) \qquad \Rightarrow \qquad T(3) = 3.$$

- Case |S| = 3: gives $3 = \mathbf{E}[T] = \frac{1}{3} \cdot T(2) + \frac{4}{9} \cdot T(3) + \frac{2}{9} \cdot T(4)$ $\Rightarrow T(4) = 6$, similarly, T(5) = 10 etc.
- can continue to define T(i) inductively in this way (note T is unique) (a proof that $T(i) = {i \choose 2}$ is harder)