# Introduction to Probability

Lecture 10: Estimators (Part I) Mateja Jamnik, <u>Thomas Sauerwald</u>

University of Cambridge, Department of Computer Science and Technology email: {mateja.jamnik,thomas.sauerwald}@cl.cam.ac.uk

Easter 2025



Compiled: May 22, 2025 at 21:52

**Defining and Analysing Estimators** 

More Examples

Setting: We can take random samples in the form of i.i.d. random variables  $X_1, X_2, \ldots, X_n$  from an unknown distribution.

- Taking enough samples allows us to estimate the mean (WLLN, CLT)
- Using indicator variables, we can estimate P [X ≤ a] for any a ∈ ℝ
   → in principle we can reconstruct the entire distribution

Setting: We can take random samples in the form of i.i.d. random variables  $X_1, X_2, \ldots, X_n$  from an unknown distribution.

- Taking enough samples allows us to estimate the mean (WLLN, CLT)
- Using indicator variables, we can estimate P [X ≤ a] for any a ∈ R
   → in principle we can reconstruct the entire distribution
  - How can we directly estimate the variance or other parameters?



How can we measure the accuracy of an estimator?

 → bias (this lecture) and mean squared error (next lecture)



Setting: We can take random samples in the form of i.i.d. random variables  $X_1, X_2, \ldots, X_n$  from an unknown distribution.

- Taking enough samples allows us to estimate the mean (WLLN, CLT)
- Using indicator variables, we can estimate P [X ≤ a] for any a ∈ R
   → in principle we can reconstruct the entire distribution
  - How can we directly estimate the variance or other parameters?



- $\rightsquigarrow$  estimator
- How can we measure the accuracy of an estimator?

   → bias (this lecture) and mean squared error (next lecture)

#### **Physical Experiments:**

Measurement = Quantity of Interest + Measurement Error

Setting: We can take random samples in the form of i.i.d. random variables  $X_1, X_2, \ldots, X_n$  from an unknown distribution.

- Taking enough samples allows us to estimate the mean (WLLN, CLT)
- Using indicator variables, we can estimate P [X ≤ a] for any a ∈ R
   → in principle we can reconstruct the entire distribution
  - How can we directly estimate the variance or other parameters?



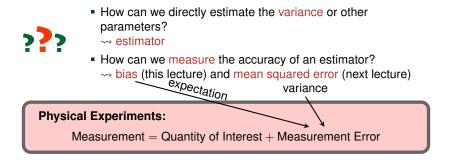
How can we measure the accuracy of an estimator?
 → bias (this lecture) and mean squared error (next lecture)
 expectation

#### **Physical Experiments:**

Measurement = Quantity of Interest + Measurement Error

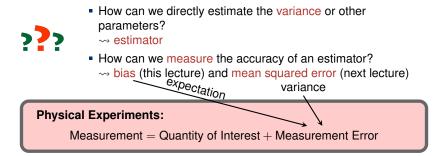
Setting: We can take random samples in the form of i.i.d. random variables  $X_1, X_2, \ldots, X_n$  from an unknown distribution.

- Taking enough samples allows us to estimate the mean (WLLN, CLT)
- Using indicator variables, we can estimate P [X ≤ a] for any a ∈ R
   → in principle we can reconstruct the entire distribution



Setting: We can take random samples in the form of i.i.d. random variables  $X_1, X_2, \ldots, X_n$  from an unknown distribution.

- Taking enough samples allows us to estimate the mean (WLLN, CLT)
- Using indicator variables, we can estimate  $\mathbf{P}[X \le a]$  for any  $a \in \mathbb{R}$   $\rightsquigarrow$  in principle we can reconstruct the entire distribution



#### **Empirical Distribution Functions**

Definition of Empirical Distribution Function (Empirical CDF) Let  $X_1, X_2, ..., X_n$  be i.i.d. samples, and F be the corresponding distribution function. For any  $a \in \mathbb{R}$ , define

$$F_n(a) := rac{\operatorname{number of } X_i \in (-\infty, a]}{n}$$

#### **Empirical Distribution Functions**

Definition of Empirical Distribution Function (Empirical CDF)

Let  $X_1, X_2, ..., X_n$  be i.i.d. samples, and F be the corresponding distribution function. For any  $a \in \mathbb{R}$ , define

$$F_n(a) := \frac{\text{number of } X_i \in (-\infty, a]}{n}$$

- Remark

The Weak Law of Large Numbers implies that for any  $\epsilon > 0$  and  $a \in \mathbb{R}$ ,

$$\lim_{n\to\infty}\mathbf{P}[|F_n(a)-F(a)|>\epsilon]=0.$$

#### **Empirical Distribution Functions**

Definition of Empirical Distribution Function (Empirical CDF) —

Let  $X_1, X_2, ..., X_n$  be i.i.d. samples, and F be the corresponding distribution function. For any  $a \in \mathbb{R}$ , define

$$F_n(a) := \frac{\text{number of } X_i \in (-\infty, a]}{n}$$

- Remark

The Weak Law of Large Numbers implies that for any  $\epsilon > 0$  and  $a \in \mathbb{R}$ ,

$$\lim_{n\to\infty}\mathbf{P}[|F_n(a)-F(a)|>\epsilon]=0.$$

Thus by taking enough samples, we can estimate the entire distribution (including its expectation and variance).

# **Empirical Distribution Functions (Example 1/2)**



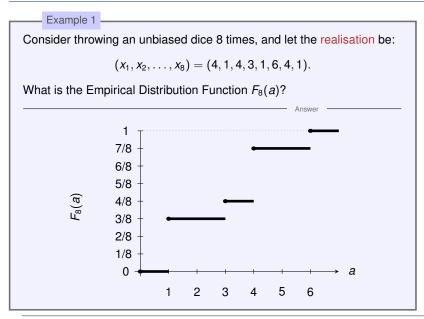
Consider throwing an unbiased dice 8 times, and let the realisation be:

$$(x_1, x_2, \ldots, x_8) = (4, 1, 4, 3, 1, 6, 4, 1).$$

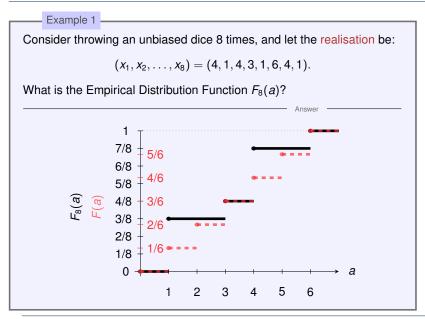
What is the Empirical Distribution Function  $F_8(a)$ ?

Answei

#### **Empirical Distribution Functions (Example 1/2)**



### **Empirical Distribution Functions (Example 1/2)**



#### **Empirical Distribution Functions (Example 2/2)**

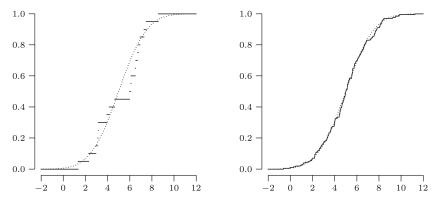




Figure: Empirical Distribution Functions of samples from a Normal Distribution  $\mathcal{N}(5,4)$  (n = 20 left, n = 200 right)

- Scenario —

Consider the packages arriving at a network server.



- Scenario —

Consider the packages arriving at a network server.

• We might be interested in:



- Scenario -

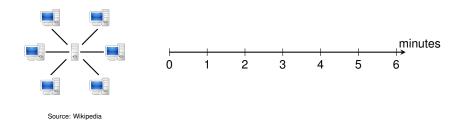
Consider the packages arriving at a network server.

- We might be interested in:
  - 1. number of packets that arrive within a "typical" minute



- Scenario -

- We might be interested in:
  - 1. number of packets that arrive within a "typical" minute

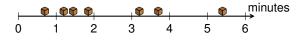


- Scenario -

Consider the packages arriving at a network server.

- We might be interested in:
  - 1. number of packets that arrive within a "typical" minute



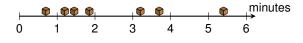


- Scenario -

Consider the packages arriving at a network server.

- We might be interested in:
  - 1. number of packets that arrive within a "typical" minute
  - 2. percentage of minutes during which no packets arrive





- Scenario -

Consider the packages arriving at a network server.

- We might be interested in:
  - 1. number of packets that arrive within a "typical" minute
  - 2. percentage of minutes during which no packets arrive



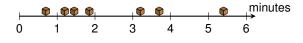


- Scenario -

Consider the packages arriving at a network server.

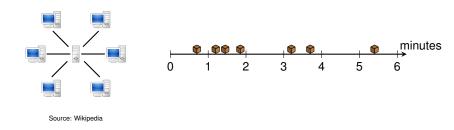
- We might be interested in:
  - 1. number of packets that arrive within a "typical" minute
  - 2. percentage of minutes during which no packets arrive





Scenario

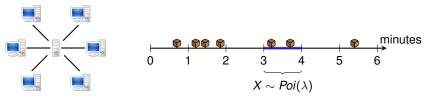
- We might be interested in:
  - 1. number of packets that arrive within a "typical" minute
  - 2. percentage of minutes during which no packets arrive
- If arrivals occur at random time  $\rightsquigarrow$  number of arrivals during one minute follows a Poisson distribution with **unknown** parameter  $\lambda$



Scenario

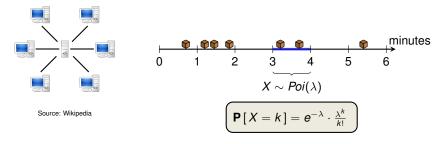
Consider the packages arriving at a network server.

- We might be interested in:
  - 1. number of packets that arrive within a "typical" minute
  - 2. percentage of minutes during which no packets arrive
- If arrivals occur at random time  $\rightsquigarrow$  number of arrivals during one minute follows a Poisson distribution with **unknown** parameter  $\lambda$



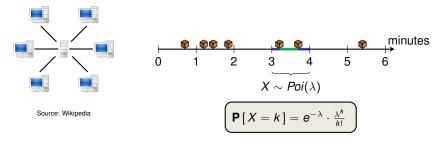
Scenario

- We might be interested in:
  - 1. number of packets that arrive within a "typical" minute
  - 2. percentage of minutes during which no packets arrive
- If arrivals occur at random time  $\rightsquigarrow$  number of arrivals during one minute follows a Poisson distribution with **unknown** parameter  $\lambda$



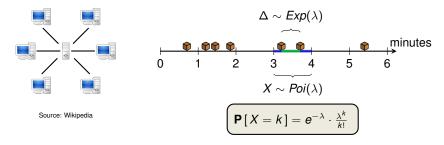
Scenario

- We might be interested in:
  - 1. number of packets that arrive within a "typical" minute
  - 2. percentage of minutes during which no packets arrive
- If arrivals occur at random time  $\rightsquigarrow$  number of arrivals during one minute follows a Poisson distribution with **unknown** parameter  $\lambda$



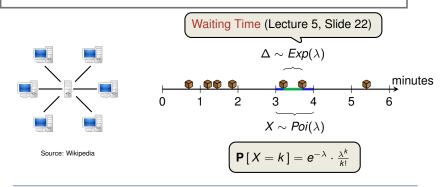
Scenario

- We might be interested in:
  - 1. number of packets that arrive within a "typical" minute
  - 2. percentage of minutes during which no packets arrive
- If arrivals occur at random time  $\rightsquigarrow$  number of arrivals during one minute follows a Poisson distribution with **unknown** parameter  $\lambda$



Scenario

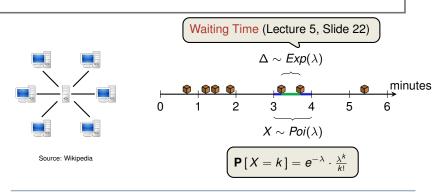
- We might be interested in:
  - 1. number of packets that arrive within a "typical" minute
  - 2. percentage of minutes during which no packets arrive
- If arrivals occur at random time → number of arrivals during one minute follows a Poisson distribution with unknown parameter λ



Scenario

Consider the packages arriving at a network server.

- We might be interested in:
  - 1. number of packets that arrive within a "typical" minute
  - 2. percentage of minutes during which no packets arrive
- If arrivals occur at random time  $\rightsquigarrow$  number of arrivals during one minute follows a Poisson distribution with **unknown** parameter  $\lambda$

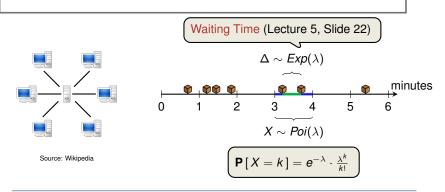


Estimator for  $\lambda$ 

Scenario

Consider the packages arriving at a network server.

- We might be interested in:
  - 1. number of packets that arrive within a "typical" minute
  - 2. percentage of minutes during which no packets arrive
- If arrivals occur at random time  $\rightsquigarrow$  number of arrivals during one minute follows a Poisson distribution with **unknown** parameter  $\lambda$



Estimator for  $\lambda$ 

Estimator for  $e^{-\lambda}$ 

Definition of Estimator

An estimate is a value *t* that only depends on the dataset  $x_1, x_2, \ldots, x_n$ , i.e.,

 $t=h(x_1,x_2,\ldots,x_n).$ 

Definition of Estimator ------

An estimate is a value *t* that only depends on the dataset  $x_1, x_2, \ldots, x_n$ , i.e.,

$$t=h(x_1,x_2,\ldots,x_n).$$

Then *t* is a realisation of the random variable

$$T=h(X_1,X_2,\ldots,X_n),$$

which is called estimator.

Definition of Estimator

An estimate is a value *t* that only depends on the dataset  $x_1, x_2, \ldots, x_n$ , i.e.,

$$t=h(x_1,x_2,\ldots,x_n).$$

Then *t* is a realisation of the random variable

$$T=h(X_1,X_2,\ldots,X_n),$$

which is called estimator.

**Questions:** 

Definition of Estimator

An estimate is a value *t* that only depends on the dataset  $x_1, x_2, \ldots, x_n$ , i.e.,

 $t=h(x_1,x_2,\ldots,x_n).$ 

Then t is a realisation of the random variable

$$T=h(X_1,X_2,\ldots,X_n),$$

which is called estimator.

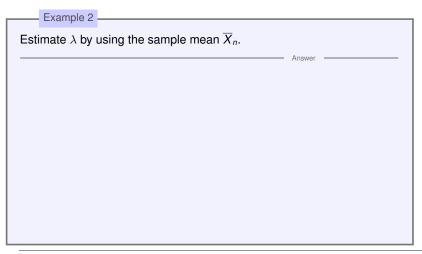
#### Questions:

- What makes an estimator suitable? unbiased (later: mean squared error)
- Does an unbiased estimator always exist? How to compute it?
- If there are several unbiased estimators, which one to choose?

Defining and Analysing Estimators

More Examples

- Samples: Given  $X_1, X_2, \ldots, X_n$  i.i.d.,  $X_i \sim Pois(\lambda)$
- Meaning: X<sub>i</sub> is the number of packets arriving in minute i



| Example 3a                                                                       |        |  |  |
|----------------------------------------------------------------------------------|--------|--|--|
| Define an estimator $h_1$ for the probability of zero arrivals, $e^{-\lambda}$ . |        |  |  |
|                                                                                  | Answer |  |  |
|                                                                                  |        |  |  |
|                                                                                  |        |  |  |
|                                                                                  |        |  |  |
|                                                                                  |        |  |  |
|                                                                                  |        |  |  |
|                                                                                  |        |  |  |
|                                                                                  |        |  |  |

■ Suppose we get the samples (*x*<sub>1</sub>, *x*<sub>2</sub>, *x*<sub>3</sub>) = (50, 100, 0)

- Suppose we get the samples (*x*<sub>1</sub>, *x*<sub>2</sub>, *x*<sub>3</sub>) = (50, 100, 0)
- Then  $(y_1, y_2, y_3) = (0, 0, 1)$ , and  $h_1(x_1, x_2, x_3) = \frac{1}{3}$

- Suppose we get the samples (*x*<sub>1</sub>, *x*<sub>2</sub>, *x*<sub>3</sub>) = (50, 100, 0)
- Then  $(y_1, y_2, y_3) = (0, 0, 1)$ , and  $h_1(x_1, x_2, x_3) = \frac{1}{3}$
- This seems too large! Also note that for the samples  $(x_1, x_2, x_3) = (1, 1, 0)$ , our estimator would give the same estimate

- Suppose we get the samples (*x*<sub>1</sub>, *x*<sub>2</sub>, *x*<sub>3</sub>) = (50, 100, 0)
- Then  $(y_1, y_2, y_3) = (0, 0, 1)$ , and  $h_1(x_1, x_2, x_3) = \frac{1}{3}$
- This seems too large! Also note that for the samples  $(x_1, x_2, x_3) = (1, 1, 0)$ , our estimator would give the same estimate

| Example 3b                                                               |          |  |
|--------------------------------------------------------------------------|----------|--|
| Define an estimator $h_2$ for $e^{-\lambda}$ based on $\overline{X}_n$ . |          |  |
|                                                                          | - Answer |  |
|                                                                          |          |  |
|                                                                          |          |  |
|                                                                          |          |  |
|                                                                          |          |  |
|                                                                          |          |  |
|                                                                          |          |  |

- Suppose we have n = 30 and we want to estimate e<sup>-λ</sup>
- Consider the two estimators  $h_1(X_1, \ldots, X_n)$  and  $h_2(X_1, \ldots, X_n)$ .

- Suppose we have n = 30 and we want to estimate e<sup>-λ</sup>
- Consider the two estimators  $h_1(X_1, \ldots, X_n)$  and  $h_2(X_1, \ldots, X_n)$ .

How good are these two estimators?

- Suppose we have n = 30 and we want to estimate e<sup>-λ</sup>
- Consider the two estimators  $h_1(X_1, \ldots, X_n)$  and  $h_2(X_1, \ldots, X_n)$ .

How good are these two estimators?

- $\Rightarrow~$  The first estimator can only attain values 0,  $\frac{1}{30}, \frac{2}{30}, \ldots, 1$
- $\Rightarrow$  The second estimator can only attain values 1,  $e^{-1/30}, e^{-2/30}, \dots$

- Suppose we have n = 30 and we want to estimate e<sup>-λ</sup>
- Consider the two estimators  $h_1(X_1, \ldots, X_n)$  and  $h_2(X_1, \ldots, X_n)$ .

How good are these two estimators?

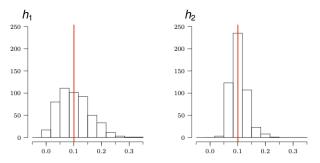
- $\Rightarrow~$  The first estimator can only attain values 0,  $\frac{1}{30}, \frac{2}{30}, \ldots, 1$
- $\Rightarrow$  The second estimator can only attain values 1,  $e^{-1/30}, e^{-2/30}, \dots$

For most values of  $\lambda$ , both estimators will never return the exact value of  $e^{-\lambda}$  on the basis of 30 observations.

• The unknown parameter is  $p = e^{-\lambda} = 0.1$  (i.e.,  $\lambda = \ln 10 \approx 2.30...$ )

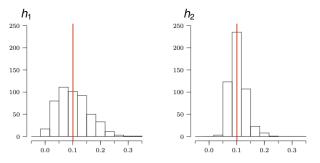
- The unknown parameter is  $p = e^{-\lambda} = 0.1$  (i.e.,  $\lambda = \ln 10 \approx 2.30...$ )
- We consider n = 30 minutes and compute h<sub>1</sub> and h<sub>2</sub>
- We repeat this 500 times and draw a frequency histogram  $(h_1 = \overline{Y}_n \text{ left}, h_2 = e^{-\overline{X}_n} \text{ right})$

- The unknown parameter is  $\rho = e^{-\lambda} = 0.1$  (i.e.,  $\lambda = \ln 10 \approx 2.30...$ )
- We consider n = 30 minutes and compute h<sub>1</sub> and h<sub>2</sub>
- We repeat this 500 times and draw a frequency histogram  $(h_1 = \overline{Y}_n \text{ left}, h_2 = e^{-\overline{X}_n} \text{ right})$



Source: Modern Introduction to Statistics

- The unknown parameter is  $p = e^{-\lambda} = 0.1$  (i.e.,  $\lambda = \ln 10 \approx 2.30...$ )
- We consider n = 30 minutes and compute h<sub>1</sub> and h<sub>2</sub>
- We repeat this 500 times and draw a frequency histogram  $(h_1 = \overline{Y}_n \text{ left}, h_2 = e^{-\overline{X}_n} \text{ right})$



Source: Modern Introduction to Statistics

Both estimators concentrate around the true value 0.1, but the second estimator appears to be more concentrated.

Intro to Probability

Definition An estimator T is called an unbiased estimator for the parameter  $\theta$  if **E**[T] =  $\theta$ ,

irrespective of the value  $\theta$ .

Definition An estimator *T* is called an unbiased estimator for the parameter  $\theta$  if  $\mathbf{E}[T] = \theta$ , irrespective of the value  $\theta$ . The bias is defined as  $\mathbf{E}[T] - \theta = \mathbf{E}[T - \theta]$ .

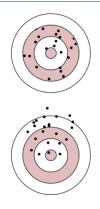
Definition —

An estimator *T* is called an unbiased estimator for the parameter  $\theta$  if

$$\mathbf{E}\left[ T\right] =\theta,$$

irrespective of the value  $\theta$ . The bias is defined as

$$\mathbf{E}[T] - \theta = \mathbf{E}[T - \theta].$$



Source: Edwin Leuven (Point Estimation)

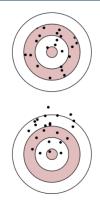
- Definition ------

An estimator *T* is called an unbiased estimator for the parameter  $\theta$  if

$$\mathbf{E}\left[ T\right] =\theta,$$

irrespective of the value  $\theta$ . The bias is defined as

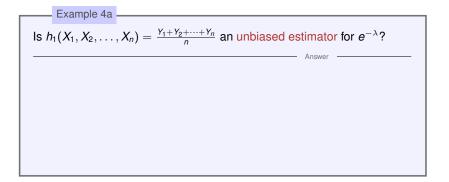
$$\mathbf{E}[T] - \theta = \mathbf{E}[T - \theta].$$

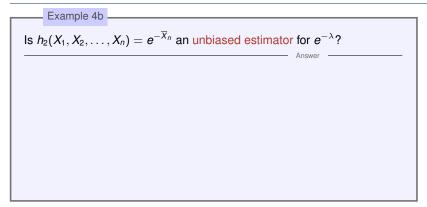


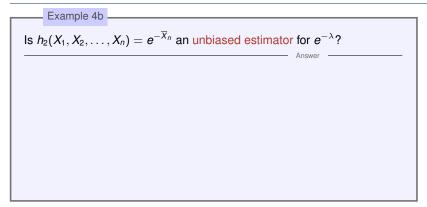
Source: Edwin Leuven (Point Estimation)

Which of the two estimators  $h_1$ ,  $h_2$  are unbiased?









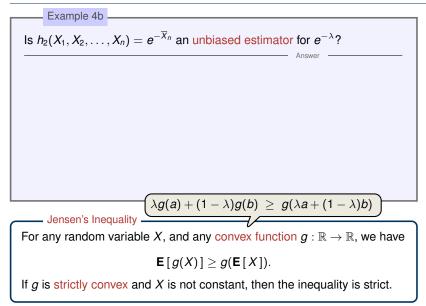
Example 4b Is  $h_2(X_1, X_2, \dots, X_n) = e^{-\overline{X}_n}$  an unbiased estimator for  $e^{-\lambda}$ ?

Jensen's Inequality

For any random variable *X*, and any convex function  $g:\mathbb{R} \to \mathbb{R}$ , we have

 $\mathsf{E}[g(X)] \geq g(\mathsf{E}[X]).$ 

If g is strictly convex and X is not constant, then the inequality is strict.



#### Asymptotic Bias of the Second Estimator (non-examinable)

Example 4c  $\mathbf{E}[h_2(X_1,\ldots,X_n)] \stackrel{n\to\infty}{\longrightarrow} e^{-\lambda}$  (hence it is asymptotically unbiased). • Recall  $h_2(X_1, \ldots, X_n) = e^{-\overline{X}_n}$ . For any 0 < k < n.  $\mathbf{P}\left[h_2(X_1,\ldots,X_n)=e^{-k/n}\right]=\mathbf{P}\left[\sum_{i=1}^n X_i=k\right]=\mathbf{P}\left[Z=k\right],$ where  $Z \sim Pois(n \cdot \lambda)$  (since  $Pois(\lambda_1) + Pois(\lambda_2) = Pois(\lambda_1 + \lambda_2)$ )  $\Rightarrow \qquad \mathbf{P}\left[h_2(X_1,\ldots,X_n)=e^{-k/n}\right]=\frac{e^{-n\lambda}\cdot(n\lambda)^k}{k!}$  $\Rightarrow \quad \mathbf{E}[h_2(X_1, \dots, X_n)] = \sum_{k=0}^{\infty} e^{-n\lambda} \cdot \frac{(n\lambda^k)}{k!} \cdot e^{-k/n}$   $= e^{-n\lambda} \cdot e^{n\lambda e^{-1/n}} \sum_{k=0}^{\infty} e^{-n\lambda e^{-1/n}} \cdot \frac{(n\lambda e^{-1/n})^k}{k!}$  $=e^{-n\lambda\cdot(1-e^{-1/n})}$ . since  $e^x = 1 + x + O(x^2)$  for small  $x \xrightarrow{n \to \infty} e^{-n\lambda \cdot (1 - 1 + 1/n + O(1/n^2))} = e^{-\lambda + O(\lambda/n)}$ . Hence in the limit, the positive bias of  $h_2$  diminishes. Introduction

**Defining and Analysing Estimators** 

More Examples

Unbiased Estimators for Expectation and Variance — Let  $X_1, X_2, ..., X_n$  be identically distributed samples from a distribution with finite expectation  $\mu$  and finite variance  $\sigma^2$ .

Then

$$\overline{X}_n := \frac{X_1 + X_2 + \dots + X_n}{n}$$

is an unbiased estimator for  $\mu$ .

• Furthermore, for  $n \ge 2$ ,

$$S_n = S_n(X_1,\ldots,X_n) := \frac{1}{n-1} \cdot \sum_{i=1}^n (X_i - \overline{X}_n)^2$$

is an unbiased estimator for  $\sigma^2$ .

|  | Answer |  |
|--|--------|--|
|  |        |  |
|  |        |  |
|  |        |  |
|  |        |  |
|  |        |  |
|  |        |  |
|  |        |  |
|  |        |  |
|  |        |  |
|  |        |  |

# An Unbiased Estimator may not always exist

Example 6

Suppose that we have one sample  $X \sim Bin(n, p)$ , where 0 is unknown but*n*is known. Prove there is no unbiased estimator for <math>1/p.

Answer

Answe

| Exam | ple 6 | (cntd. |
|------|-------|--------|
|------|-------|--------|

Suppose that we have one sample  $X \sim Bin(n, p)$ , where 0 is unknown but*n*is known. Prove there is no unbiased estimator for <math>1/p.

Answei

Example 6 (cntd.)

Suppose that we have one sample  $X \sim Bin(n, p)$ , where 0 is unknown but*n*is known. Prove there is no unbiased estimator for <math>1/p.

• Suppose there exists an unbiased estimator with E[T(X)] = 1/p.

Answei

Example 6 (cntd.)

Suppose that we have one sample  $X \sim Bin(n, p)$ , where 0 is unknown but*n*is known. Prove there is no unbiased estimator for <math>1/p.

• Suppose there exists an unbiased estimator with E[T(X)] = 1/p.

Then

$$1 = p \cdot \mathbf{E} [T(X)]$$

Answei

Example 6 (cntd.)

Suppose that we have one sample  $X \sim Bin(n, p)$ , where 0 is unknown but*n*is known. Prove there is no unbiased estimator for <math>1/p.

• Suppose there exists an unbiased estimator with E[T(X)] = 1/p.

Then

$$= p \cdot \mathbf{E} [T(X)]$$
$$= p \cdot \sum_{k=0}^{n} \mathbf{P} [X = k] \cdot T(k)$$

Answei

Example 6 (cntd.)

Suppose that we have one sample  $X \sim Bin(n, p)$ , where 0 is unknown but*n*is known. Prove there is no unbiased estimator for <math>1/p.

• Suppose there exists an unbiased estimator with E[T(X)] = 1/p.

Then

$$I = p \cdot \mathbf{E} [T(X)]$$
$$= p \cdot \sum_{k=0}^{n} \mathbf{P} [X = k] \cdot T(k)$$
$$= p \cdot \sum_{k=0}^{n} {n \choose k} p^{k} \cdot (1 - p)^{n-k} \cdot T(k)$$

Example 6 (cntd.)

Suppose that we have one sample  $X \sim Bin(n, p)$ , where 0 is unknown but*n*is known. Prove there is no unbiased estimator for <math>1/p.

• Suppose there exists an unbiased estimator with  $\mathbf{E}[T(X)] = 1/p$ .

Then

$$I = p \cdot \mathbf{E} [T(X)]$$
$$= p \cdot \sum_{k=0}^{n} \mathbf{P} [X = k] \cdot T(k)$$
$$= p \cdot \sum_{k=0}^{n} {n \choose k} p^{k} \cdot (1 - p)^{n-k} \cdot T(k)$$

Last term is a polynomial of degree n + 1 with constant term zero

Example 6 (cntd.)

Suppose that we have one sample  $X \sim Bin(n, p)$ , where 0 is unknown but*n*is known. Prove there is no unbiased estimator for <math>1/p.

• Suppose there exists an unbiased estimator with  $\mathbf{E}[T(X)] = 1/p$ .

Then

$$I = p \cdot \mathbf{E} [T(X)]$$
  
=  $p \cdot \sum_{k=0}^{n} \mathbf{P} [X = k] \cdot T(k)$   
=  $p \cdot \sum_{k=0}^{n} {n \choose k} p^{k} \cdot (1 - p)^{n-k} \cdot T(k)$ 

■ Last term is a polynomial of degree n + 1 with constant term zero  $\Rightarrow p \cdot \mathbf{E} [T(X)] - 1$  is a (non-zero) polynomial of degree  $\le n + 1$ 

Example 6 (cntd.)

Suppose that we have one sample  $X \sim Bin(n, p)$ , where 0 is unknown but*n*is known. Prove there is no unbiased estimator for <math>1/p.

• Suppose there exists an unbiased estimator with E[T(X)] = 1/p.

Then

$$I = p \cdot \mathbf{E}[T(X)]$$
$$= p \cdot \sum_{k=0}^{n} \mathbf{P}[X = k] \cdot T(k)$$
$$= p \cdot \sum_{k=0}^{n} {n \choose k} p^{k} \cdot (1 - p)^{n-k} \cdot T(k)$$

• Last term is a polynomial of degree n + 1 with constant term zero  $\Rightarrow p \cdot \mathbf{E} [T(X)] - 1$  is a (non-zero) polynomial of degree  $\le n + 1$  $\Rightarrow$  this polynomial has at most n + 1 roots

Example 6 (cntd.)

Suppose that we have one sample  $X \sim Bin(n, p)$ , where 0 is unknown but*n*is known. Prove there is no unbiased estimator for <math>1/p.

• Suppose there exists an unbiased estimator with E[T(X)] = 1/p.

Then

$$I = p \cdot \mathbf{E}[T(X)]$$
$$= p \cdot \sum_{k=0}^{n} \mathbf{P}[X = k] \cdot T(k)$$
$$= p \cdot \sum_{k=0}^{n} {n \choose k} p^{k} \cdot (1 - p)^{n-k} \cdot T(k)$$

• Last term is a polynomial of degree n + 1 with constant term zero

 $\Rightarrow p \cdot \mathbf{E}[T(X)] - 1$  is a (non-zero) polynomial of degree  $\leq n + 1$ 

 $\Rightarrow$  this polynomial has at most n + 1 roots

 $\Rightarrow$  **E**[*T*(*X*)] can be equal to 1/*p* for at most *n* + 1 values of *p*, and thus cannot be an unbiased.