

Introduction to Probability

Lecture 10: Estimators (Part I)

Mateja Jamnik, Thomas Sauerwald

University of Cambridge, Department of Computer Science and Technology
email: {mateja.jamnik,thomas.sauerwald}@cl.cam.ac.uk

Easter 2025

UNIVERSITY OF
CAMBRIDGE

Compiled: May 22, 2025 at 21:54

Outline

Introduction

Defining and Analysing Estimators

More Examples

Setting: We can take **random samples** in the form of **i.i.d. random variables** X_1, X_2, \dots, X_n from an **unknown distribution**.

- Taking enough samples allows us to estimate the **mean** (WLLN, CLT)
- Using indicator variables, we can estimate $\mathbf{P}[X \leq a]$ for any $a \in \mathbb{R}$
~~ in principle we can reconstruct the entire **distribution**

- How can we directly estimate the **variance** or other parameters?
~~ **estimator**
- How can we **measure** the accuracy of an estimator?
~~ **bias** (this lecture) and **mean squared error** (next lecture)

expectation

variance

Physical Experiments:

Measurement = Quantity of Interest + Measurement Error

Empirical Distribution Functions

Definition of Empirical Distribution Function (Empirical CDF)

Let X_1, X_2, \dots, X_n be i.i.d. samples, and F be the corresponding distribution function. For any $a \in \mathbb{R}$, define

$$F_n(a) := \frac{\text{number of } X_i \in (-\infty, a]}{n}.$$

Remark

The **Weak Law of Large Numbers** implies that for any $\epsilon > 0$ and $a \in \mathbb{R}$,

$$\lim_{n \rightarrow \infty} \mathbf{P} [|F_n(a) - F(a)| > \epsilon] = 0.$$

Thus by taking enough samples, we can estimate the entire distribution (including its expectation and variance).

Empirical Distribution Functions (Example 1/2)

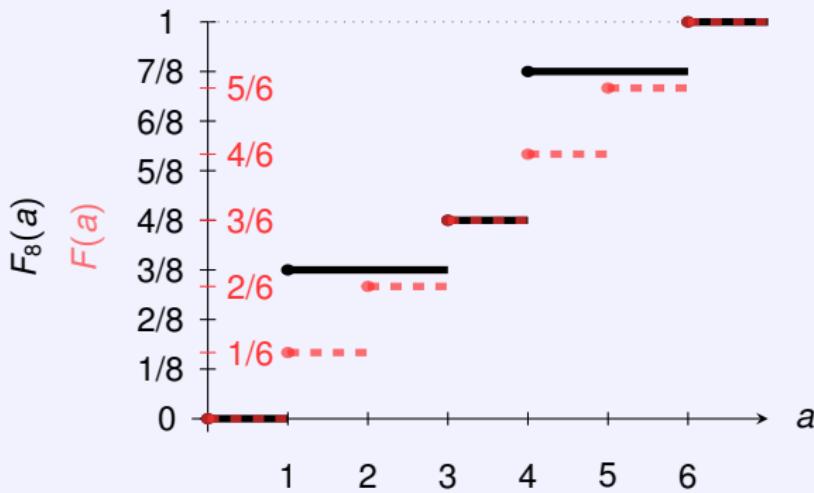
Example 1

Consider throwing an unbiased dice 8 times, and let the **realisation** be:

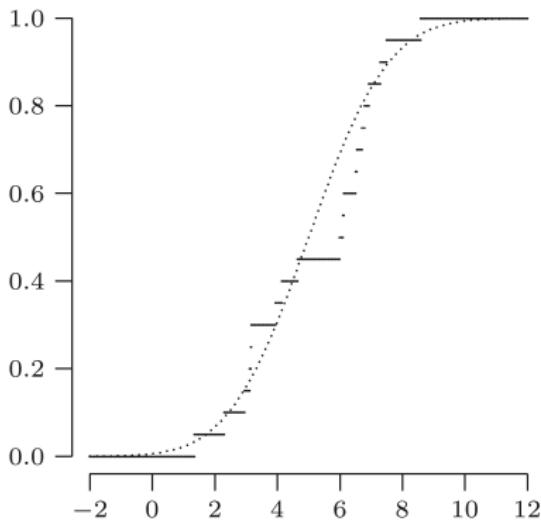
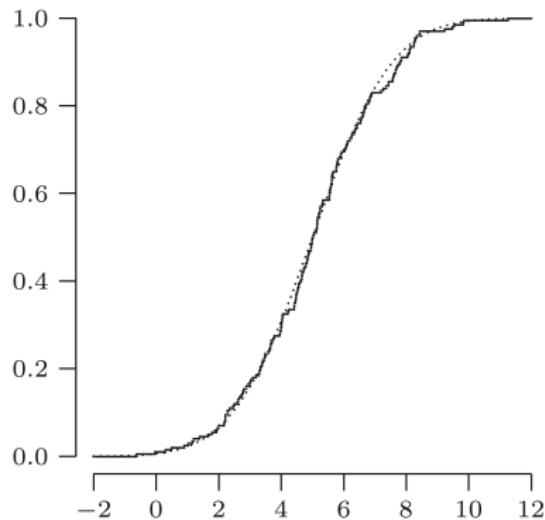
$$(x_1, x_2, \dots, x_8) = (4, 1, 4, 3, 1, 6, 4, 1).$$

What is the Empirical Distribution Function $F_8(a)$?

Answer



Empirical Distribution Functions (Example 2/2)



Source: Modern Introduction to Statistics

Figure: Empirical Distribution Functions of samples from a Normal Distribution $\mathcal{N}(5, 4)$ ($n = 20$ left, $n = 200$ right)

An Example of an Estimation Problem

Scenario

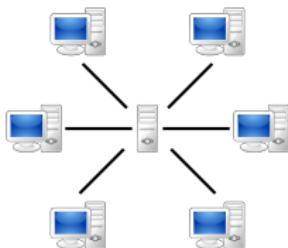
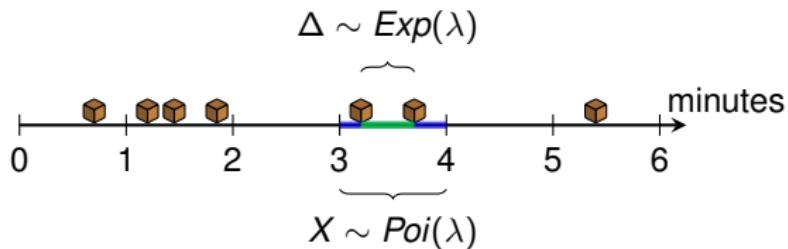
Consider the packages arriving at a network server.

- We might be interested in:
 1. number of packets that arrive within a “typical” minute
 2. percentage of minutes during which no packets arrive
- If arrivals occur at random time \leadsto number of arrivals during one minute follows a **Poisson distribution** with **unknown** parameter λ

Estimator for λ

Estimator for $e^{-\lambda}$

Waiting Time (Lecture 5, Slide 22)



Source: Wikipedia

$$\mathbf{P}[X = k] = e^{-\lambda} \cdot \frac{\lambda^k}{k!}$$

Definition of Estimator

An **estimate** is a value t that only depends on the dataset x_1, x_2, \dots, x_n , i.e.,

$$t = h(x_1, x_2, \dots, x_n).$$

Then t is a realisation of the random variable

$$T = h(X_1, X_2, \dots, X_n),$$

which is called **estimator**.

Questions:

- What makes an **estimator** suitable? **unbiased** (later: **mean squared error**)
- Does an **unbiased estimator** always exist? How to compute it?
- If there are several **unbiased** estimators, which one to choose?

Outline

Introduction

Defining and Analysing Estimators

More Examples

Example: Arrival of Packets (1/3)

- **Samples:** Given X_1, X_2, \dots, X_n i.i.d., $X_i \sim \text{Pois}(\lambda)$
- **Meaning:** X_i is the number of packets arriving in minute i

Example 2

Estimate λ by using the sample mean \bar{X}_n .

Answer _____

We have

$$\bar{X}_n := \frac{X_1 + X_2 + \dots + X_n}{n},$$

and $\mathbf{E} [\bar{X}_n] = \mathbf{E} [X_1] = \lambda$. This suggests the estimator:

$$h(X_1, X_2, \dots, X_n) := \bar{X}_n.$$

Applying the **Weak Law of Large Numbers**:

$$\lim_{n \rightarrow \infty} \mathbf{P} \left[\left| \bar{X}_n - \lambda \right| > \epsilon \right] = 0 \quad \text{for any } \epsilon > 0.$$

Example: Arrival of Packets (2/3)

Example 3a

Define an estimator h_1 for the probability of zero arrivals, $e^{-\lambda}$.

Answer

Let X_1, X_2, \dots, X_n be the n samples. Let

$$Y_i := \mathbf{1}_{X_i=0}.$$

Then

$$\mathbf{E}[Y_i] = \mathbf{P}[X_i = 0] = e^{-\lambda},$$

and thus we can define an estimator by

$$h_1(X_1, X_2, \dots, X_n) := \frac{Y_1 + Y_2 + \dots + Y_n}{n} = \bar{Y}_n.$$

Example: Arrival of Packets (3/3)

- Suppose we get the samples $(x_1, x_2, x_3) = (50, 100, 0)$
- Then $(y_1, y_2, y_3) = (0, 0, 1)$, and $h_1(x_1, x_2, x_3) = \frac{1}{3}$
- This seems **too large**! Also note that for the samples $(x_1, x_2, x_3) = (1, 1, 0)$, our estimator would give the same estimate

Example 3b

Define an estimator h_2 for $e^{-\lambda}$ based on \bar{X}_n .

Answer

We saw that $\bar{X}_n = \frac{\sum_{i=1}^n X_i}{n}$ satisfies $\mathbf{E} [\bar{X}_n] = \mathbf{E} [X_1] = \lambda$.

Recall by the **Weak Law of Large Numbers**:

$$\lim_{n \rightarrow \infty} \mathbf{P} \left[\left| \bar{X}_n - \lambda \right| > \epsilon \right] = 0 \quad \text{for any } \epsilon > 0.$$

This suggests to estimate $e^{-\lambda}$ by $e^{-\bar{X}_n}$. Hence our estimator is

$$h_2(X_1, X_2, \dots, X_n) := e^{-\bar{X}_n}.$$

Behaviour of the Estimators

- Suppose we have $n = 30$ and we want to estimate $e^{-\lambda}$
- Consider the **two estimators** $h_1(X_1, \dots, X_n)$ and $h_2(X_1, \dots, X_n)$.

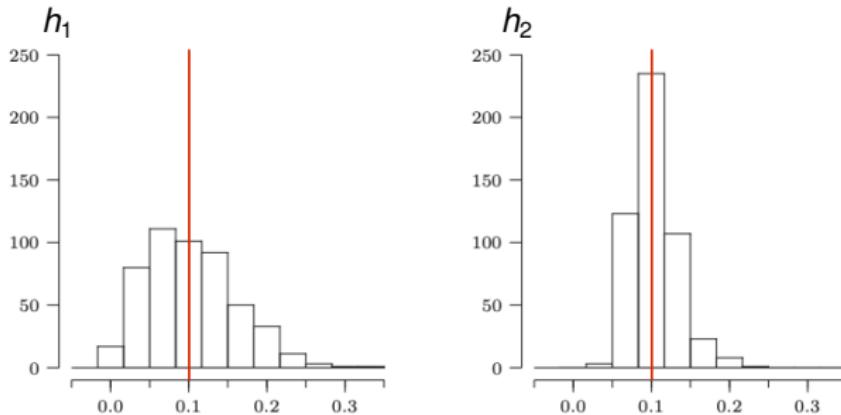
How **good** are these two estimators?

- ⇒ The first estimator can only attain values $0, \frac{1}{30}, \frac{2}{30}, \dots, 1$
- ⇒ The second estimator can only attain values $1, e^{-1/30}, e^{-2/30}, \dots$

For most values of λ , both estimators will never return the **exact** value of $e^{-\lambda}$ on the basis of 30 observations.

Simulation of the two Estimators

- The unknown parameter is $p = e^{-\lambda} = 0.1$ (i.e., $\lambda = \ln 10 \approx 2.30 \dots$)
- We consider $n = 30$ minutes and compute h_1 and h_2
- We repeat this 500 times and draw a frequency histogram
($h_1 = \bar{Y}_n$ left, $h_2 = e^{-\bar{X}_n}$ right)



Source: Modern Introduction to Statistics

Both estimators concentrate around the true value 0.1, but the second estimator appears to be more concentrated.

Unbiased Estimators and Bias

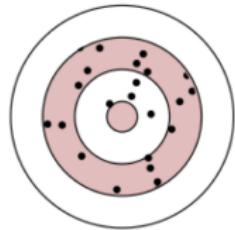
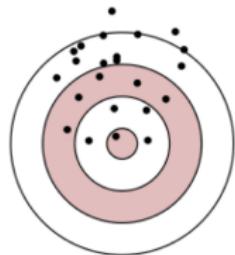
Definition

An **estimator** T is called an **unbiased estimator** for the parameter θ if

$$\mathbf{E}[T] = \theta,$$

irrespective of the value θ . The **bias** is defined as

$$\mathbf{E}[T] - \theta = \mathbf{E}[T - \theta].$$



Source: Edwin Leuven (Point Estimation)

Which of the two estimators h_1, h_2 are unbiased?

Analysis of the Bias of the First Estimator

Example 4a

Is $h_1(X_1, X_2, \dots, X_n) = \frac{Y_1 + Y_2 + \dots + Y_n}{n}$ an unbiased estimator for $e^{-\lambda}$?

Answer

Recall we defined $Y_i := \mathbf{1}_{X_i=0}$. **Yes**, because:

$$\begin{aligned}\mathbf{E}[h_1(X_1, X_2, \dots, X_n)] &= \frac{n \cdot \mathbf{E}[Y_1]}{n} \\ &= \mathbf{P}[X_1 = 0] \\ &= e^{-\lambda}.\end{aligned}$$

Bias of the Second Estimator (and Jensen's Inequality)

Example 4b

Is $h_2(X_1, X_2, \dots, X_n) = e^{-\bar{X}_n}$ an unbiased estimator for $e^{-\lambda}$?

Answer

No! (recall: $\mathbf{E}[X^2] \geq \mathbf{E}[X]^2$)

- We have

$$\mathbf{E}[e^{-\bar{X}_n}] > e^{-\mathbf{E}[\bar{X}_n]} = e^{-\lambda}$$

- This follows by Jensen's inequality, and the inequality is strict since $g: z \mapsto e^{-z}$ is strictly convex and \bar{X}_n is not constant.
- Thus $h_2(X_1, X_2, \dots, X_n)$ is not unbiased – it has positive bias.

$$\lambda g(a) + (1 - \lambda)g(b) \geq g(\lambda a + (1 - \lambda)b)$$

Jensen's Inequality

For any random variable X , and any convex function $g: \mathbb{R} \rightarrow \mathbb{R}$, we have

$$\mathbf{E}[g(X)] \geq g(\mathbf{E}[X]).$$

If g is strictly convex and X is not constant, then the inequality is strict.

Asymptotic Bias of the Second Estimator (non-examinable)

Example 4c

$\mathbf{E}[h_2(X_1, \dots, X_n)] \xrightarrow{n \rightarrow \infty} e^{-\lambda}$ (hence it is **asymptotically** unbiased).

Answer

- Recall $h_2(X_1, \dots, X_n) = e^{-\bar{X}_n}$. For any $0 \leq k \leq n$,

$$\mathbf{P}[h_2(X_1, \dots, X_n) = e^{-k/n}] = \mathbf{P}\left[\sum_{i=1}^n X_i = k\right] = \mathbf{P}[Z = k],$$

where $Z \sim \text{Pois}(n \cdot \lambda)$ (since $\text{Pois}(\lambda_1) + \text{Pois}(\lambda_2) = \text{Pois}(\lambda_1 + \lambda_2)$)

$$\Rightarrow \mathbf{P}[h_2(X_1, \dots, X_n) = e^{-k/n}] = \frac{e^{-n\lambda} \cdot (n\lambda)^k}{k!}$$

$$\begin{aligned} \Rightarrow \mathbf{E}[h_2(X_1, \dots, X_n)] &= \sum_{k=0}^{\infty} e^{-n\lambda} \cdot \frac{(n\lambda)^k}{k!} \cdot e^{-k/n} \\ &\quad \text{By LOTUS} \\ &= e^{-n\lambda} \cdot e^{n\lambda e^{-1/n}} \sum_{k=0}^{\infty} e^{-n\lambda e^{-1/n}} \cdot \frac{(n\lambda e^{-1/n})^k}{k!} \\ &= e^{-n\lambda \cdot (1 - e^{-1/n})} \cdot 1 \end{aligned}$$

since $e^x = 1 + x + O(x^2)$ for small x $\xrightarrow{n \rightarrow \infty} e^{-n\lambda \cdot (1 - 1 + 1/n + O(1/n^2))} = e^{-\lambda + O(\lambda/n)}$.

Hence in the limit, the positive bias of h_2 diminishes.

Outline

Introduction

Defining and Analysing Estimators

More Examples

Unbiased Estimators for Expectation and Variance

Let X_1, X_2, \dots, X_n be identically distributed samples from a distribution with finite expectation μ and finite variance σ^2 .

- Then

$$\bar{X}_n := \frac{X_1 + X_2 + \dots + X_n}{n}$$

is an unbiased estimator for μ .

- Furthermore, for $n \geq 2$,

$$S_n = S_n(X_1, \dots, X_n) := \frac{1}{n-1} \cdot \sum_{i=1}^n (X_i - \bar{X}_n)^2$$

is an unbiased estimator for σ^2 .

Example 5

We need to prove: $\mathbf{E}[S_n] = \sigma^2$.

Answer

Multiplying by $n - 1$ yields:

$$\begin{aligned}(n - 1) \cdot S_n &= \sum_{i=1}^n (X_i - \bar{X}_n)^2 \\&= \sum_{i=1}^n (X_i - \mu + \mu - \bar{X}_n)^2 \\&= \sum_{i=1}^n (X_i - \mu)^2 + \sum_{i=1}^n (\bar{X}_n - \mu)^2 - 2 \sum_{i=1}^n (X_i - \mu)(\bar{X}_n - \mu) \\&= \sum_{i=1}^n (X_i - \mu)^2 + n(\bar{X}_n - \mu)^2 - 2(\bar{X}_n - \mu) \cdot n \cdot (\bar{X}_n - \mu) \\&= \sum_{i=1}^n (X_i - \mu)^2 - n(\bar{X}_n - \mu)^2.\end{aligned}$$

Let us now take expectations:

$$\text{By Lec. 8, Slide 21: } \mathbf{E}[(\bar{X}_n - \mu)^2] = \mathbf{V}[\bar{X}_n] = \sigma^2/n$$

$$\begin{aligned}(n - 1) \cdot \mathbf{E}[S_n] &= \sum_{i=1}^n \mathbf{E}[(X_i - \mu)^2] - n \cdot \mathbf{E}[(\bar{X}_n - \mu)^2] \\&= n \cdot \sigma^2 - n \cdot \sigma^2/n \\&= (n - 1) \cdot \sigma^2.\end{aligned}$$

An Unbiased Estimator may not always exist

Example 6

Suppose that we have one sample $X \sim \text{Bin}(n, p)$, where $0 < p < 1$ is unknown but n is known. Prove there is **no unbiased estimator** for $1/p$.

Answer

- First a simpler proof which exploits that p might be arbitrarily small
- Intuition:** By making p smaller and smaller, we force $\max_{0 \leq k \leq n} T(k)$, $k \in \{0, 1, \dots, n\}$ to become bigger and bigger
- Formal Argument:**
 - Fix any estimator $T(X)$
 - Define $M := \max_{0 \leq k \leq n} T(k)$. Then,

$$\begin{aligned}\mathbf{E}[T(X)] &= \sum_{k=0}^n \binom{n}{k} p^k (1-p)^{n-k} \cdot T(k) \\ &\leq M \cdot \sum_{k=0}^n \binom{n}{k} p^k (1-p)^{n-k} = M.\end{aligned}$$

- Hence this estimator does not work for $p < \frac{1}{M}$, since then $\mathbf{E}[T(X)] \leq M < \frac{1}{p}$ (negative bias!)
- The next proof will work even if $p \in [a, b]$ for $0 < a < b \leq 1$.

An Unbiased Estimator may not always exist (cntd. - non-examinable)

Example 6 (cntd.)

Suppose that we have one sample $X \sim \text{Bin}(n, p)$, where $0 < p < 1$ is unknown but n is known. Prove there is **no unbiased estimator** for $1/p$.

Answer

- Suppose there exists an unbiased estimator with $\mathbf{E}[T(X)] = 1/p$.
- Then

$$\begin{aligned} 1 &= p \cdot \mathbf{E}[T(X)] \\ &= p \cdot \sum_{k=0}^n \mathbf{P}[X = k] \cdot T(k) \\ &= p \cdot \sum_{k=0}^n \binom{n}{k} p^k \cdot (1-p)^{n-k} \cdot T(k) \end{aligned}$$

- Last term is a **polynomial of degree $n+1$** with constant term zero
 $\Rightarrow p \cdot \mathbf{E}[T(X)] - 1$ is a **(non-zero) polynomial of degree $\leq n+1$**
 \Rightarrow this polynomial has at most $n+1$ roots
 $\Rightarrow \mathbf{E}[T(X)]$ can be equal to $1/p$ for at most $n+1$ values of p , and thus cannot be an unbiased.