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Introduction

Setting: We can take random samples in the form of i.i.d. random vari-
ables Xi, Xz, ..., X, from an unknown distribution.

= Taking enough samples allows us to estimate the mean (WLLN, CLT)

= Using indicator variables, we can estimate P[ X < a] for any a € R
~= in principle we can reconstruct the entire distribution

= How can we directly estimate the variance or other
parameters?
,,, ~» estimator
= B =
* How can we measure the accuracy of an estimator?

~ bias (this Iecture) and mean squared error (next lecture)
vanance

Physical Experiments: \
Measurement = Quantity of Interest + Measurement Error
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Empirical Distribution Functions

Definition of Empirical Distribution Function (Empirical CDF)

Let X1, Xz, ..., X, be i.i.d. samples, and F be the corresponding distribution
function. For any a € R, define

number of X; € (—o0, &

Fa(a) = :

——— Remark

The Weak Law of Large Numbers implies that for any e > 0 and a € R,

nlLrQoPHF”(a) — F(a)| >e€]=0.

Thus by taking enough samples, we can estimate the
entire distribution (including its expectation and variance).
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Empirical Distribution Functions (Example 1/2)

Example 1

Consider throwing an unbiased dice 8 times, and let the realisation be:
(X1,X2,. .. ,Xg) = (4,1,4,3,1,6,4, 1)

What is the Empirical Distribution Function Fg(a)?

Answer
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Empirical Distribution Functions (Example 2/2)
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Source: Modern Introduction to Statistics

Figure: Empirical Distribution Functions of samples from a Normal Distribution A/ (5, 4)

(n = 20 left, n = 200 right)
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An Example of an Estimation Problem

Scenario
Consider the packages arriving at a network server.

= We might be interested in:

1. number of packets that arrive within a “typical” minute

2. percentage of minutes during which no packets arrive { Estimator for e=* ]

= If arrivals occur at random time ~~ number of arrivals during one
minute follows a Poisson distribution with unknown parameter A

[Waiting Time (Lecture 5, Slide 22) ]

~NJ
- - A ~ Exp(X)
-o - -0 ! !! !% ! ! % ! %mlnutes
/ \ 0 1 2 3 4 5 6
- - X ~ Poi()\)
Source: Wikipedia [P [X — k] — 6'7)\ . A/T‘l( J
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Estimator

Definition of Estimator

An estimate is a value t that only depends on the dataset x1, X2, . . ., Xp, i.€.,
t = h(x1, X, ..., Xn).

Then t is a realisation of the random variable
T =h(X1, X, ..., Xn),

which is called estimator.

Questions:
= What makes an estimator suitable? unbiased (later: mean squared error)
= Does an unbiased estimator always exist? How to compute it?
= |f there are several unbiased estimators, which one to choose?
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Example: Arrival of Packets (1/3)

= Samples: Given Xi, Xz, ..., Xp i.i.d., X ~ Pois(\)
= Meaning: X; is the number of packets arriving in minute i

Example 2

)} \| v n

Y

Estimate X by using the sample mean X,.

Answer

We have
Y . X1+X2+"'+Xn
n.— n 5

and E [7,,] = E[X;] = X. This suggests the estimator:

h(X1,X2,. co ,Xn) = Xn.

Applying the Weak Law of Large Numbers:

n— oo

lim PHY,,—)\‘>6]:O for any € > 0.
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Example: Arrival of Packets (2/3)

Example 3a

Answer
Let Xi, X, ..., X, be the n samples. Let
Yi == 1x=0.

Then
E[V]=P[X=0]=e",
and thus we can define an estimator by

Yi+ Yo+ -+ VYn
n

I
S

h1(X1,X2,...,Xn) a=

A

Define an estimator hy for the probability of zero arrivals, e™".
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Example: Arrival of Packets (3/3)

= Suppose we get the samples (x1, X2, x3) = (50, 100, 0)
* Then (y1,¥2,¥3) = (0,0,1), and hi(x1, Xz, X3) = §

= This seems too large! Also note that for the samples
(x1,x,x3) = (1,1,0), our estimator would give the same estimate

Example 3b

Define an estimator h, for e=* based on X,,.

Answer
We saw that X, = % satisfies E [Y,,] =E[Xi] =\
Recall by the Weak Law of Large Numbers:

n— oo

lim PHY,,—)\’>6]:O for any € > 0.

This suggests to estimate e~ by e~ %, Hence our estimator is

ha( X, Xo, ..., Xn) == € %",
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Behaviour of the Estimators

= Suppose we have n = 30 and we want to estimate e~

A

= Consider the two estimators hy (X, ..., Xn) and h(Xi,. .., Xp).

= The first estimator can only attain values 0
= The second estimator can only attain values 1, e

How good are these two estimators?

730,30,...,1
-1 —2
/30 g=2/30

N

the exact value of e on the basis of 30 observations.

[ For most values of )\, both estimators will never return

Intro to Probability
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Simulation of the two Estimators

= The unknown parameterisp=e"* =0.1 (i.,e, A=1In10~2.30...
= We consider n = 30 minutes and compute h; and h»
= We repeat this 500 times and draw a frequency histogram

(hy = Y, left, b, = e~*" right)

hy
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100 —

hy

250 4
200
150 —

100 —

r
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Source: Modern Introduction to Statistics

T

T
0.2

T
0.3

Both estimators concentrate around the true value 0.1, but
the second estimator appears to be more concentrated.

1
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Unbiased Estimators and Bias

Definition

An estimator T is called an unbiased estimator for
the parameter 6 if

E[T]=09,
irrespective of the value 6. The bias is defined as

E[T]-0=E[T-40].

Source: Edwin Leuven (Point Estimation)

Which of the two estimators hy, h, are unbiased?
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Analysis of the Bias of the First Estimator

Example 4a
Is by (X1, Xe, . .., Xn) = 2372224% g ynbiased estimator for 7*?
Answer
Recall we defined Y; := 1x—o. Yes, because:
n-E[Y;
E[h (X1, X,.... Xn)] = #
=P[X; =0]
A

=e .
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Bias of the Second Estimator (and Jensen’s Inequality)

Example 4b

Is ho( X1, Xo,...,Xp) = e~*" an unbiased estimator for e=>?

Answer

No! (recall: E[ X?] > E[X]?)
= We have

E [e‘y”} > o E[Xn] — g

= This follows by Jensen’s inequality, and the inequality is strict since
g : z+— e Zis strictly convex and X, is not constant.
= Thus hx(X1, Xz, ..., Xn) is not unbiased — it has positive bias.
(Ag(@) + (1= Ng(b) > gra+(1-3b) J

174 \
For any random variable X, and any convex function g : R — R, we have

E[9(X)] > 9(E[X]).
If g is strictly convex and X is not constant, then the inequality is strict.

~——— Jensen’s Inequality

\. J
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Asymptotic Bias of the Second Estimator (non-examinable)

Example 4c

E[ho(Xi,...,X)] =3 e (hence it is asymptotically unbiased).

Answer

= Recall ho(X1,...,Xn) = e—Xn. For any0 < k <n,
n
P [hz(xh...,xn):e*“/"] -P [Z)(,»k] =P[Z=k],
i=1

where Z ~ Pois(n - \) (since Pois(\1) + Pois(A2) = Pois(A1 + X2))

e . (n\)k
= P[m(X,... X)) =e k"] = #

N em (n%)
= E[h2(X1,...,Xn)]_kZ:Oe gt

o0 —
—nx | gmae~ 1/ Zefnkeq/” ) (nxe1/mk

=e - e
|
= k!

_ efnk-(1fe_1/") q

2
[since e =1+ x + O(x?) for small x 5%00 e~ M -(1=1+1/n+0(1/r7)) _ e—A;O(A/").
L

(Hence in the limit, the positive bias of h, diminishes. J
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Unbiased Estimator for Expectation and Variance

~——— Unbiased Estimators for Expectation and Variance

Let X1, X, ..., Xy be identically distributed samples from a distribution
with finite expectation 1 and finite variance o2.
= Then

Xi+Xo+--+Xn
n

Xp =

is an unbiased estimator for .
= Furthermore, for n > 2,

n

(% - Xn)

i=1

Sn: Sn(X1,...,Xn) =

is an unbiased estimator for 2.

~
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Example 5

We need to prove: E[S,] = o2.

Answer

Multiplying by n — 1 yields:
n

(n—1)-sn:Z(x,—Yn)2
i=1
:Xn:(X/—u+u—7n)2
i=1
:znjm—u)2+2";(Yn—u)z—zznj()o—u)(in—u)
i=1 i=1 i=1

== w2 0 (Ko ) ~2 (Ko=) - (%o 1)
i=1

=i(Xf—u)2—n(7n—u)2~
- [By Lec. 8, Slide 21: E [ (Xo — 2] =V [Xa] = o2/ ]

T

(n—1)-E[S)] = XH;E[(x,-—u)z] —n~E[(Yn—u)2]
=i

Let us now take expectations:

=n.02_n.02/n

(n—1)-o°
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An Unbiased Estimator may not always exist

Example 6

Suppose that we have one sample X ~ Bin(n, p), where 0 < p < 1is
unknown but n is known. Prove there is no unbiased estimator for 1/p.

Answer

= First a simpler proof which exploits that p might be arbitrarily small

k € {0,1,..., n} to become bigger and bigger
= Formal Argument:

= Fix any estimator T(X)
= Define M := maxo<k<n T(k). Then,

E[TO01=3 (7)P*(1 = p)" % T(k)

k=0
<M. Z()p(p —k = M.

= Hence this estimator does not work for p < ,37, since then
E[T(X)] <M < [ (negative bias))

= The next proof will work evenif p € [a,b] for0 < a< b < 1.

= [ntuition: By making p smaller and smaller, we force maxo<x<n T(k),

Intro to Probability More Examples
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An Unbiased Estimator may not always exist (cntd. - non-examinable)

Example 6 (cntd.)

Suppose that we have one sample X ~ Bin(n, p), where 0 < p < 1is
unknown but n is known. Prove there is no unbiased estimator for 1/p.

Answer
= Suppose there exists an unbiased estimator with E[ T(X)] = 1/p.
= Then

1=p-E[T(X)]

=p- Y _P[X=kK]-T(k)

k=0
=p-y (,’Z)p* S(1=p)"F - T(K)
k=0

= Last term is a polynomial of degree n -+ 1 with constant term zero
= p-E[T(X)] —1is a (non-zero) polynomial of degree < n+ 1
= this polynomial has at most n + 1 roots

= E[T(X)] can be equal to 1/p for at most n+ 1 values of p, and
thus cannot be an unbiased.
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