Hoare logic and Model checking

Revision class

Christopher Pulte cp526 University of Cambridge

CST Part II - 2023/24

Hoare logic and separation logic

The concept of ownership

Ownership of a heap cell is the permission to safely read/write/dispose of it. This ownership is not duplicable.

E.g.: use-after-free: dispose(X); [X] := 5

Separation logic:

If ownership were duplicable:

 $\{X \mapsto v\}$ dispose(X); $\{emp\}$ **proof fails** $\{X \mapsto v\}$ [X] := 5 $\{X \mapsto 5\}$ $\{X \mapsto v\}$ $\{X \mapsto v * X \mapsto v\}$ dispose(X); $\{X \mapsto v\}$ [X] := 5 $\{X \mapsto 5\}$

Pure assertions

$$\llbracket - \rrbracket(=) : Assertion \to Stack \to \mathcal{P}(Heap)$$
$$\llbracket \bot \rrbracket(s) \stackrel{def}{=} \emptyset$$
$$\llbracket \top \rrbracket(s) \stackrel{def}{=} Heap$$
$$\llbracket P \land Q \rrbracket(s) \stackrel{def}{=} \llbracket P \rrbracket(s) \cap \llbracket Q \rrbracket(s)$$
$$\llbracket P \lor Q \rrbracket(s) \stackrel{def}{=} \llbracket P \rrbracket(s) \cup \llbracket Q \rrbracket(s)$$
$$\llbracket P \Rightarrow Q \rrbracket(s) \stackrel{def}{=} \{h \in Heap \mid h \in \llbracket P \rrbracket(s) \Rightarrow h \in \llbracket Q \rrbracket(s)\}$$
$$\vdots$$

What is the meaning of pure assertions, such as \top or $t_1 = t_2$? Do they implicitly require the heap to be empty?

Semantics of pure assertions

$$\llbracket t_1 = t_2 \rrbracket(s) = \{h \mid \llbracket t_1 \rrbracket(s) = \llbracket t_2 \rrbracket(s)\} = \begin{cases} Heap & \text{if } \llbracket t_1 \rrbracket(s) = \llbracket t_2 \rrbracket(s) \\ \emptyset & \text{otherwise} \end{cases}$$

More generally, the semantics of a pure assertion in a stack s: **Informally:** "check the pure assertion in s"; if it holds in s, return the set of all heaps, if not return the empty set of heaps.

Formally: don't worry about it, because we have not defined it.

Semantics of pure assertions, wrt. heap (continued).

The 2019 exam paper 8, question 7 asks:

$$\begin{aligned} &\{N = n \land N \ge 0\} \\ &X := \text{null; while } N > 0 \text{ do } (X := \text{alloc}(N, X); N := N - 1) \\ &\{\text{list}(X, [1, \dots, n])\} \end{aligned}$$

(I have not checked whether that year used different definitions from ours, but) This seems to be missing emp in the pre-condition: $\{N = n \land N \ge 0 \land emp\}$

Why? $\{N = n \land N \ge 0\}$ makes no statement about the heap — if the stack has the right property, it is satisfied by any heap. But without the emp requirement, we would not be able to prove the post-condition $\{\text{list}(X, [1, ..., n])\}$, which asserts that the **only** ownership is that of the list predicate instance. Related: error in 2021 Paper 8 Question 8.

The pre-condition should have

 $\cdots \wedge 1 \leq S$

 $\cdots * 1 < S$

instead of

What are the differences between them and when to use which? And how do they interact with pure assertions?

$$\llbracket P * Q \rrbracket(s) \stackrel{\text{def}}{=} \left\{ h \in \text{Heap} \middle| \begin{array}{c} h_1 \in \llbracket P \rrbracket(s) \land \\ h_2 \in \llbracket Q \rrbracket(s) \land \\ h = h_1 \uplus h_2 \end{array} \right\}$$
$$\llbracket P \land Q \rrbracket(s) \stackrel{\text{def}}{=} \llbracket P \rrbracket(s) \cap \llbracket Q \rrbracket(s)$$

Conjunction and separating conjunction (continued)

$$\llbracket P * Q \rrbracket(s) \stackrel{\text{def}}{=} \left\{ \begin{array}{c} h \in \text{Heap} \\ h \in \text{Heap} \\ \exists h_1, h_2. & h_2 \in \llbracket Q \rrbracket(s) \land \\ h = h_1 \uplus h_2 \end{array} \right\}$$
$$\llbracket P \land Q \rrbracket(s) \stackrel{\text{def}}{=} \llbracket P \rrbracket(s) \cap \llbracket Q \rrbracket(s)$$

 $p_1 \mapsto v_1 * p_2 \mapsto v_2$ vs. $p_1 \mapsto v_1 \wedge p_2 \mapsto v_2$

- p₁ → v₁ * p₂ → v₂ holds for a heap h that is the disjoint union of heaplets h₁ and h₂, where h₁ contains just cell p₁, with value v₁, and h₂ just cell p₂, with value v₂. So: ownership of two disjoint heap cells p₁ and p₂ with p₁ ≠ p₂.
- p₁ → v₁ ∧ p₂ → v₂ holds for a heap h that satisfies two assertions simultaneously (is in the intersection of their interpretations):
 (1) p₁ → v₁: h is a heap of just one heap cell, p₁ with value v₁
 (2) p₂ → v₂: h is a heap of just one heap cell, p₂ with value v₂
 So: ownership of just **one** heap cell, p₁ = p₂ with value v₁ = v₂.

Conjunction and separating conjunction (continued)

$$\llbracket P * Q \rrbracket(s) \stackrel{\text{def}}{=} \left\{ \begin{array}{c} h_1 \in \llbracket P \rrbracket(s) \land \\ h \in Heap \\ \exists h_1, h_2. \quad h_2 \in \llbracket Q \rrbracket(s) \land \\ h = h_1 \uplus h_2 \end{array} \right\}$$
$$\llbracket P \land Q \rrbracket(s) \stackrel{\text{def}}{=} \llbracket P \rrbracket(s) \cap \llbracket Q \rrbracket(s)$$

 $(p\mapsto 1)*Y=0$ vs. $(p\mapsto 1)\wedge Y=0$

- (p → 1) * Y = 0 holds for a stack s and a heap h where h is the disjoint union of heaplets h₁ and h₂, such that h₁ contains ownership of one cell, p with value 1, and h₂ is an arbitrary heap if s satisfies Y = 0. So, s must map Y to 0 and h is the disjoint union of the heaplet of just p with value 1 and an arbitrary disjoint heap h₂.
- (p → 1) ∧ Y = 0 holds for a stack s and a heap h satisfying two assertion simultaneously: p → 1 and Y = 0. This means s must map Y to 0 and h must be the heap consisting of just that one cell.

emp in the alloc rule

Q: Why have the 'emp' in the precondition of the alloc rule?

$$\vdash \{X = x \land emp\} \ X := \operatorname{alloc}(E_0, ..., E_n) \ \{X \mapsto E_0[x/X], ..., E_n[x/X]\}$$

A: This is needed for soundness. Otherwise the alloc rule would allow us to silently drop ownership of other heap cells.

Use of frame rule (to obtain " $\cdots \land emp$ ") in Lecture 5, slide 28

{*list*(Y, α) $\land X = x$ } $\{\exists z. (list(Y, \alpha) \land X = x) \land HEAD = z\}$ {(*list*(Y, α) $\land X = x$) \land *HEAD* = z} $\{(\text{list}(Y, \alpha) \land X = x) * (\text{HEAD} = z \land \text{emp})\}$ $\{HEAD = z \land emp\}$ HEAD := alloc(X, Y){ $HEAD \mapsto X[z/HEAD], Y[z/HEAD]$ } { $HEAD \mapsto X, Y$ } $\{(list(Y, \alpha) \land X = x) * HEAD \mapsto X, Y\}$ $\{(list(Y, \alpha) * HEAD \mapsto X, Y) \land X = x)\}$ $\{\exists z. (list(Y, \alpha) * HEAD \mapsto X, Y) \land X = x)\}$ {(*list*(Y, α) * *HEAD* \mapsto *X*, *Y*) \land *X* = *x*}

It is good to be careful of the possibly unexpected behaviour of the new separation logic assertions!

Example: 2019-p08-q07, e

Give a loop invariant for the following list concatenation triple:

{list(X, α) * list(Y, β)} if X = null then 7 = Yelse (Z := X; U := Z; V := [Z + 1];while $V \neq$ null do (U := V; V := [V + 1]); [U + 1] := Y) $\{ \text{list}(Z, \alpha + \beta) \}$

Example: 2019-p08-q07, e

 $\{ list(X, \alpha) * list(Y, \beta) \}$ if X = null then

$$Z := Y$$

else (

$$\begin{split} & Z := X; \ U := Z; \ V := [Z + 1]; \\ & \text{while } V \neq \text{null do } (U := V \ ; \ V := [V + 1]); \\ & [U + 1] := Y \end{split}$$

) $\{ \text{list}(Z, \alpha ++ \beta) \}$

Example: 2019-p08-q07, e

 $\{(\operatorname{list}(X, \alpha) * \operatorname{list}(Y, \beta)) \land X \neq \operatorname{null}\}$ Z := X; U := Z; V := [Z + 1];while V \neq null do (U := V; V := [V + 1]); [U + 1] := Y $\{\operatorname{list}(Z, \alpha ++ \beta)\}$ {(list(X, α) * list(Y, β)) $\land X \neq$ null} $\{\exists t, p, \delta. \alpha = [t] + \delta \land (X \mapsto t, p * \mathsf{list}(p, \delta) * \mathsf{list}(Y, \beta))\}$ Z := X; $\{\exists t, p, \delta, \alpha = [t] + \delta \land (Z \mapsto t, p * \operatorname{list}(p, \delta) * \operatorname{list}(Y, \beta))\}$ U := Z: $\{\exists t, p, \delta, \alpha = [t] + \delta \land U = Z \land (Z \mapsto t, p * \operatorname{list}(p, \delta) * \operatorname{list}(Y, \beta))\}$ V := [Z + 1]; $\{\exists t, \delta, \alpha = [t] + \delta \land U = Z \land (Z \mapsto t, V * \text{list}(V, \delta) * \text{list}(Y, \beta))\}$ $I : \{\exists \gamma, t, \delta, \alpha = \gamma + [t] + \delta \land (\mathsf{plist}(Z, \gamma, U) * \mathsf{plist}(U, [t], V) * \mathsf{list}(V, \delta) * \mathsf{list}(Y, \beta))\}$ while $V \neq$ null do (U := V; V := [V + 1]); $\{\exists \gamma, t, \delta, \alpha = \gamma + [t] + \delta \land (\mathsf{plist}(Z, \gamma, U) * \mathsf{plist}(U, [t], V) * \mathsf{list}(V, \delta) * \mathsf{list}(Y, \beta))$ $\land \neg (V \neq \text{null}) \}$ [U + 1] := Y $\{\exists \gamma, t, \delta, \alpha = \gamma + [t] + \delta \land (\mathsf{plist}(Z, \gamma, U) * \mathsf{plist}(U, [t], Y) * \mathsf{list}(V, \delta) * \mathsf{list}(Y, \beta))$ $\land \neg (V \neq \text{null}) \}$ 15 $\{ \text{list}(Z, \alpha ++ \beta) \}$

Proof outlines + loop invariants

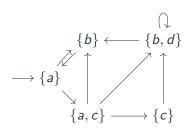
- Q: How much detail to give in proof outline in exam?Q: If asked to provide a loop invariant, do you need to provide the full proof?
- A: The exam text will be clear about that.

Model Checking

Temporal operators, e.g. in CTL

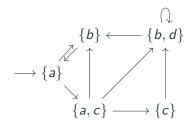
- $AX\psi$ and $EX\psi$:
 - Does the state satisfying ψ have to be different from the starting state?
 - Does ψ have to continue holding?
- $A(\psi_1 U \psi_2)$ and $E(\psi_1 U \psi_2)$:
 - Does ψ_1 have to continue holding?
 - What about ψ_2 ?

LTL examples



ϕ	$\textit{\textit{M}}\vDash\phi$
а	yes
Xa	no
Fb	yes
Fc	no
$(a \lor b)Uc$	no
dUa	yes
$G(a \lor b \lor c)$	yes
GFb	yes
FGb	no

CTL examples



ψ	$\pmb{M}\vDash\psi$
$EX(b \wedge \neg c)$	yes
AFd	no
EFd	yes
E(aUd)	yes
AGEFd	yes
AFEGd	no
EFEGd	yes
$E((a \lor c)U(EGb))$	yes

LTL/CTL expressivity

An elevator property: "If it is possible to answer a call to some level in the next step, then the elevator does that"

- CTL formula ψ : A G ((Call₂ \wedge E X Loc₂) \rightarrow A X Loc₂)
- **Q:** Can we express the same in LTL with formula ϕ : G (Call₂ \land (Loc₁ \lor Loc₃)) \rightarrow X Loc₂?

This depends on the details of the elevator temporal model.¹ In any case, ψ and ϕ are not generally equivalent. The point is: expressing properties of the tree of possible paths out of a given state — such as asserting the **existence** of some path — is not possible with LTL.

 ^{1}I think — the way we have sketched the elevator in lecture 7 — this will not work: Loc₁ \vee Loc₃ does not imply there exists a next step such that Loc₂ holds.

LTL/CTL expressivity

An LTL formula not expressible in CTL: $\phi = (F \ p) \rightarrow (F \ q)$.

a) CTL formula $\psi_1 = (A \vdash p) \rightarrow (A \vdash q).$ ϕ does not hold, ψ_1 does.

$$\begin{array}{c}
\left(\begin{array}{c}
\left(\begin{array}{c}
\right) \\
3: \left\{ \right\} \end{array}\right) \\
\left(\begin{array}{c}
\left(\begin{array}{c}
\right) \\
1: \left\{ \right\} \end{array}\right) \\
\left(\begin{array}{c}
\left(\begin{array}{c}
\right) \\
2: \left\{ p \right\} \end{array}\right) \\
\left(\begin{array}{c}
\left(\begin{array}{c}
\right) \\
2: \left\{ p \right\} \end{array}\right) \\
\left(\begin{array}{c}
\left(\begin{array}{c}
\right) \\
2: \left\{ p \right\} \end{array}\right) \\
\left(\begin{array}{c}
\left(\begin{array}{c}
\left(\begin{array}{c}
\right) \\
2: \left\{ p \right\} \end{array}\right) \\
\left(\begin{array}{c}
\left(\begin{array}{c}
\left(\begin{array}{c}
\right) \\
2: \left\{ p \right\} \end{array}\right) \\
\left(\begin{array}{c}
\left(\begin{array}{c}
\left(\begin{array}{c}
\right) \\
2: \left\{ p \right\} \end{array}\right) \\
\left(\begin{array}{c}
\left(\begin{array}{c}
\left(\begin{array}{c}
\left(\begin{array}{c}
\right) \\
2: \left\{ p \right\} \end{array}\right) \\
\left(\begin{array}{c}
\left(\begin{array}{c}
\left(\begin{array}{c}
\left(\begin{array}{c}
\right) \\
2: \left\{ p \right\} \end{array}\right) \\
\left(\begin{array}{c}
\left(\begin{array}{c}
\left(\begin{array}{c}
\left(\begin{array}{c}
\left(\begin{array}{c}
\right) \\
2: \left\{ p \right\} \end{array}\right) \\
\left(\begin{array}{c}
\left(\end{array}{c}
\left(\begin{array}{c}
\left(\begin{array}{c}
\left(\begin{array}{c}
\left(\begin{array}{c}
\left(\end{array}{c}
\left(\begin{array}{c}
\left(\begin{array}{c}
\left(\end{array}{c}
\left(\begin{array}{c}
\left(\begin{array}{c}
\left(\begin{array}{c}
\left(\end{array}{c}
\left(\end{array}{c}
\left(\begin{array}{c}
\left(\end{array}{c}
\left(\end{array}{c}
\left(\end{array}{c}
\left(\begin{array}{c}
\left(\end{array}{c}
\left(\end{array}{c}$$

b) CTL formula $\psi_2 = A \in (p \to (A \models q)).$ ϕ holds, ψ_2 does not.

$$ightarrow$$
 4 : {q} $ightarrow$ 5 : {p}

LTL/CTL expressivity

Why are F G p in LTL and A F A G p in CTL not equivalent? $\rightarrow 1: \{p\} \longrightarrow 2: \{\} \longrightarrow 3: \{p\}$ \updownarrow

Two kinds of infinite paths: (L1) loop in 1 forever, (L2) loop in 3 forever. Both kinds of paths **eventually** reach a state in which p holds **generally** (1 or 3, respectively). So F G p holds.

Informally: A F A G p holds if (check CTL (CTL*) semantics):

- all paths π from 1 satisfy F A G p, so
- all paths π from 1 eventually reach a state where A G p holds

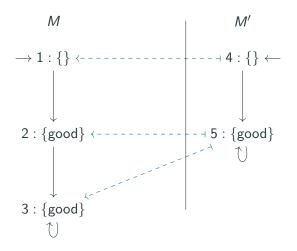
But path kind (L1) does not: never leaves 1, and in 1, A G p is not satisfied, because there exists a path π_2 that goes to 2 from there.

Q: LTL vs ACTL?

It is good to be careful about the unexpected interaction of the temporal operators, with other temporal operators and with path quantifiers.

Simulation relations

Q: Why simulation relations and not simulation functions? Example: $AP = AP' = \{good\}$. *M* simulates *M'*



Good luck!