
Hoare logic and Model checking
Revision class

Christopher Pulte cp526
University of Cambridge

CST Part II – 2023/24

Hoare logic and separation logic

The concept of ownership

Ownership of a heap cell is the permission to safely
read/write/dispose of it. This ownership is not duplicable.

E.g.: use-after-free: dispose(X); [X ] := 5

Separation logic:

{X 7→ v}
dispose(X);
{emp}
proof fails
{X 7→ v}
[X] := 5
{X 7→ 5}

If ownership were duplicable:

{X 7→ v}
{X 7→ v ∗ X 7→ v}
dispose(X);
{X 7→ v}
[X] := 5
{X 7→ 5}

1

Pure assertions

[[←]](⇐) : Assertion → Stack → P(Heap)

[[⊥]](s) def
= ∅

[[>]](s) def
= Heap

[[P ∧ Q]](s) def
= [[P ]](s) ∩ [[Q]](s)

[[P ∨ Q]](s) def
= [[P ]](s) ∪ [[Q]](s)

[[P ⇒ Q]](s) def
= {h ∈ Heap | h ∈ [[P ]](s) ⇒ h ∈ [[Q]](s)}

...

What is the meaning of pure assertions, such as > or t1 = t2? Do
they implicitly require the heap to be empty?

2



Semantics of pure assertions

[[←]](⇐) : Assertion → Stack → P(Heap)

[[t1 = t2]](s) = {h | [[t1]](s) = [[t2]](s)} =

Heap if [[t1]](s) = [[t2]](s)
∅ otherwise

More generally, the semantics of a pure assertion in a stack s:

Informally: “check the pure assertion in s”; if it holds in s, return
the set of all heaps, if not return the empty set of heaps.

Formally: don’t worry about it, because we have not defined it.

3

Semantics of pure assertions, wrt. heap (continued).

The 2019 exam paper 8, question 7 asks:

{N = n ∧ N ≥ 0}
X := null; while N > 0 do (X := alloc(N, X); N := N −1)
{list(X , [1, . . . , n])}

(I have not checked whether that year used different definitions
from ours, but) This seems to be missing emp in the
pre-condition: {N = n ∧ N ≥ 0 ∧ emp}

Why? {N = n ∧ N ≥ 0} makes no statement about the heap — if
the stack has the right property, it is satisfied by any heap. But
without the emp requirement, we would not be able to prove the
post-condition {list(X , [1, . . . , n])}, which asserts that the only
ownership is that of the list predicate instance.

4

Another error

Related: error in 2021 Paper 8 Question 8.

The pre-condition should have

· · · ∧ 1 ≤ S

instead of
· · · ∗ 1 ≤ S

.

5

Conjunction and separating conjunction

What are the differences between them and when to use which?
And how do they interact with pure assertions?

[[P ∗ Q]](s) def
=

h ∈ Heap

∣∣∣∣∣∣∣∃h1, h2.

h1 ∈ [[P ]](s) ∧
h2 ∈ [[Q]](s) ∧
h = h1 ] h2


[[P ∧ Q]](s) def

= [[P ]](s) ∩ [[Q]](s)

6



Conjunction and separating conjunction (continued)

[[P ∗ Q]](s) def
=

h ∈ Heap

∣∣∣∣∣∣∣∃h1, h2.

h1 ∈ [[P ]](s) ∧
h2 ∈ [[Q]](s) ∧
h = h1 ] h2


[[P ∧ Q]](s) def

= [[P ]](s) ∩ [[Q]](s)

p1 7→ v1 ∗ p2 7→ v2 vs. p1 7→ v1 ∧ p2 7→ v2

• p1 7→ v1 ∗ p2 7→ v2 holds for a heap h that is the disjoint union of
heaplets h1 and h2, where h1 contains just cell p1, with value v1,
and h2 just cell p2, with value v2. So: ownership of two disjoint
heap cells p1 and p2 with p1 6= p2.

• p1 7→ v1 ∧ p2 7→ v2 holds for a heap h that satisfies two assertions
simultaneously (is in the intersection of their interpretations):
(1) p1 7→ v1: h is a heap of just one heap cell, p1 with value v1

(2) p2 7→ v2: h is a heap of just one heap cell, p2 with value v2

So: ownership of just one heap cell, p1 = p2 with value v1 = v2.
7

Conjunction and separating conjunction (continued)

[[P ∗ Q]](s) def
=

h ∈ Heap

∣∣∣∣∣∣∣∃h1, h2.

h1 ∈ [[P ]](s) ∧
h2 ∈ [[Q]](s) ∧
h = h1 ] h2


[[P ∧ Q]](s) def

= [[P ]](s) ∩ [[Q]](s)

(p 7→ 1) ∗ Y = 0 vs. (p 7→ 1) ∧ Y = 0

• (p 7→ 1) ∗ Y = 0 holds for a stack s and a heap h where h is the
disjoint union of heaplets h1 and h2, such that h1 contains ownership
of one cell, p with value 1, and h2 is an arbitrary heap if s satisfies
Y = 0. So, s must map Y to 0 and h is the disjoint union of the
heaplet of just p with value 1 and an arbitrary disjoint heap h2.

• (p 7→ 1) ∧ Y = 0 holds for a stack s and a heap h satisfying two
assertion simultaneously: p 7→ 1 and Y = 0. This means s must
map Y to 0 and h must be the heap consisting of just that one cell.

8

emp in the alloc rule

Q: Why have the ‘emp’ in the precondition of the alloc rule?

` {X = x ∧ emp} X := alloc(E0, ...,En) {X 7→ E0[x/X ], ...,En[x/X ]}

A: This is needed for soundness. Otherwise the alloc rule would
allow us to silently drop ownership of other heap cells.

9

Use of frame rule (to obtain “· · ·∧ emp”) in Lecture 5, slide 28

{list(Y , α) ∧ X = x}
{∃z. (list(Y , α) ∧ X = x) ∧ HEAD = z}
{(list(Y , α) ∧ X = x) ∧ HEAD = z}
{(list(Y , α) ∧ X = x) ∗ (HEAD = z ∧ emp)}
{HEAD = z ∧ emp}

HEAD := alloc(X ,Y )

{HEAD 7→ X [z/HEAD],Y [z/HEAD]}
{HEAD 7→ X ,Y }

{(list(Y , α) ∧ X = x) ∗ HEAD 7→ X ,Y }
{(list(Y , α) ∗ HEAD 7→ X ,Y ) ∧ X = x)}

{∃z. (list(Y , α) ∗ HEAD 7→ X ,Y ) ∧ X = x)}
{(list(Y , α) ∗ HEAD 7→ X ,Y ) ∧ X = x}

10



It is good to be careful of the possibly unexpected behaviour of the
new separation logic assertions!

11

Example: 2019-p08-q07, e

Give a loop invariant for the following list concatenation triple:

{list(X , α) ∗ list(Y , β)}
if X = null then
Z:=Y

else (

Z := X; U := Z; V := [Z + 1];
while V 6= null do (U := V ; V := [V + 1]);
[U + 1] := Y

)

{list(Z , α ++ β)}

12

Example: 2019-p08-q07, e

{list(X , α) ∗ list(Y , β)}
if X = null then

Z:=Y

else (

Z := X; U := Z; V := [Z + 1];
while V 6= null do (U := V ; V := [V + 1]);
[U + 1] := Y

)

{list(Z , α ++ β)} 13

Example: 2019-p08-q07, e

{(list(X , α) ∗ list(Y , β)) ∧ X 6= null}
Z := X; U := Z; V := [Z + 1];
while V 6= null do (U := V ; V := [V + 1]);
[U + 1] := Y
{list(Z , α ++ β)}

14



{(list(X , α) ∗ list(Y , β)) ∧ X 6= null}

{∃t, p, δ. α = [t] ++ δ ∧ (X 7→ t, p ∗ list(p, δ) ∗ list(Y , β))}

Z := X;

{∃t, p, δ. α = [t] ++ δ ∧ (Z 7→ t, p ∗ list(p, δ) ∗ list(Y , β))}

U := Z;

{∃t, p, δ. α = [t] ++ δ ∧ U = Z ∧ (Z 7→ t, p ∗ list(p, δ) ∗ list(Y , β))}

V := [Z + 1];

{∃t, δ. α = [t] ++ δ ∧ U = Z ∧ (Z 7→ t,V ∗ list(V , δ) ∗ list(Y , β))}

I : {∃γ, t, δ. α = γ ++ [t] ++ δ ∧ (plist(Z , γ,U) ∗ plist(U, [t],V ) ∗ list(V , δ) ∗ list(Y , β))}

while V 6= null do (U := V ; V := [V + 1]);

{∃γ, t, δ. α = γ ++ [t] ++ δ ∧ (plist(Z , γ,U) ∗ plist(U, [t],V ) ∗ list(V , δ) ∗ list(Y , β))

∧ ¬(V 6= null)}

[U + 1] := Y

{∃γ, t, δ. α = γ ++ [t] ++ δ ∧ (plist(Z , γ,U) ∗ plist(U, [t],Y ) ∗ list(V , δ) ∗ list(Y , β))

∧ ¬(V 6= null)}

{list(Z , α ++ β)} 15

Proof outlines + loop invariants

Q: How much detail to give in proof outline in exam?

Q: If asked to provide a loop invariant, do you need to
provide the full proof?

A: The exam text will be clear about that.

16

Model Checking

Temporal operators, e.g. in CTL

• AXψ and EXψ:
• Does the state satisfying ψ have to be different from the

starting state?
• Does ψ have to continue holding?

• A(ψ1Uψ2) and E(ψ1Uψ2):
• Does ψ1 have to continue holding?
• What about ψ2?

17



LTL examples

{a}

{b} {b, d}

{a, c} {c}

φ M � φ

a yes
Xa no
Fb yes
Fc no

(a ∨ b)Uc no
dUa yes

G(a ∨ b ∨ c) yes
GFb yes
FGb no

18

CTL examples

{a}

{b} {b, d}

{a, c} {c}

ψ M � ψ

EX(b ∧ ¬c) yes
AFd no
EFd yes

E(aUd) yes
AGEFd yes
AFEGd no
EFEGd yes

E((a ∨ c)U(EGb)) yes

19

LTL/CTL expressivity

An elevator property: “If it is possible to answer a call to some
level in the next step, then the elevator does that”

CTL formula ψ: A G ((Call2 ∧ E X Loc2) → A X Loc2)

Q: Can we express the same in LTL with formula φ:
G (Call2 ∧ (Loc1 ∨ Loc3)) → X Loc2?

This depends on the details of the elevator temporal model.1 In
any case, ψ and φ are not generally equivalent. The point is:
expressing properties of the tree of possible paths out of a given
state — such as asserting the existence of some path — is not
possible with LTL.

1I think — the way we have sketched the elevator in lecture 7 — this will not
work: Loc1 ∨ Loc3 does not imply there exists a next step such that Loc2 holds.

20

LTL/CTL expressivity

An LTL formula not expressible in CTL: φ = (F p) → (F q).

a) CTL formula ψ1 = (A F p) → (A F q).
φ does not hold, ψ1 does.

1 : {} 2 : {p}3 : {}

b) CTL formula ψ2 = A G (p → (A F q)).
φ holds, ψ2 does not.

4 : {q} 5 : {p}

21



LTL/CTL expressivity

Why are F G p in LTL and A F A G p in CTL not equivalent?

1 : {p} 2 : {} 3 : {p}

Two kinds of infinite paths: (L1) loop in 1 forever, (L2) loop in 3
forever. Both kinds of paths eventually reach a state in which p
holds generally (1 or 3, respectively). So F G p holds.

Informally: A F A G p holds if (check CTL (CTL*) semantics):

• all paths π from 1 satisfy F A G p, so
• all paths π from 1 eventually reach a state where A G p holds

But path kind (L1) does not: never leaves 1, and in 1, A G p is not
satisfied, because there exists a path π2 that goes to 2 from there.

Q: LTL vs ACTL? 22

It is good to be careful about the unexpected interaction of the
temporal operators, with other temporal operators and with path
quantifiers.

23

Simulation relations

Q: Why simulation relations and not simulation functions?
Example: AP = AP ′ = {good}. M simulates M ′

1 : {}

2 : {good}

3 : {good}

4 : {}

5 : {good}

M M ′

24

Good luck!

25


