Hoare logic and Model checking

Revision class

Christopher Pulte cp526
University of Cambridge

CST Part Il - 2023/24

The concept of ownership

Ownership of a heap cell is the permission to safely
read /write/dispose of it. This ownership is not duplicable.

E.g.: use-after-free: dispose(X);[X] :=5

Separation logic: If ownership were duplicable:
{X+— v} {X = v}

dispose(X); {X—= v X v}

{emp} dispose(X);

proof fails {X v}

{X— v} [X]:=5

[X] :==5 {X +— 5}

{X — 5}

Hoare logic and separation logic

Pure assertions

[-1(=) : Assertion — Stack — P(Heap)
[L1(s) =0
[T1(s)
[P A Q1(s) = [PI(s) N [QI(s)
)
)

def

= Heap

[P v QI(s) = [PI(s) U [QI(s)

[P = Q](s d:Ef{h € Heap | h € [P](s) = h € [Q](s)}

What is the meaning of pure assertions, such as T or t; = t,7 Do
they implicitly require the heap to be empty?

Semantics of pure assertions Semantics of pure assertions, wrt. heap (continued).

The 2019 exam paper 8, question 7 asks:

{N=nANZ>0}
X := null; while N > 0 do (X := alloc(N, X); N := N —1
[-1() : Assertion — Stack — P(Heap) null; while o (alloc(N, X))

{list(X,[L,...,n])}
Heap if [t1](s) = [t](s)

[t: = ©](s) = {h [[t:](s) = [2](s)} = 0 otherwise (1 have not checked whether that year used different definitions
from ours, but) This seems to be missing emp in the

. . re-condition: {N=nAN>0Aem
More generally, the semantics of a pure assertion in a stack s: P { - P}

Why? {N = nA N > 0} makes no statement about the heap — if

Informally: “check the pure assertion in s”; if it holds in s, return] o o
the stack has the right property, it is satisfied by any heap. But

the set of all heaps, if not return the empty set of heaps.]]
without the emp requirement, we would not be able to prove the

Formally: don't worry about it, because we have not defined it. post-condition {list(X, [L,...,n])}, which asserts that the only

ownership is that of the list predicate instance.

3
Another error Conjunction and separating conjunction

What the diff bet th d when t hich?
Related: error in 2021 Paper 8 Question 8. at are the d e.rences e.ween em an. when to use whic

And how do they interact with pure assertions?
The pre-condition should have

ALZS hy € [P](s) A
def
instead of [P+ Q[(s) = { h € Heap|3h1, ha. hy € [Q](s) A
h=hiWho

x1<S
[P A QI(s) [P1(s) N [QI(s)

Conjunction and separating conjunction (continued) Conjunction and separating conjunction (continued)

hi € [P](s) A hi € [P](s) A
[P+ QI(s) £ { h € Heap|3hy, ho. hy € [Q](s) A [P QI(s) £ { h € Heap|3hy, ho. hy € [Q](s) A
h=hy ¥ hy h=h; ¥ hy
def def
[P A QI(s) = [PI(s) N IQI(s) [P A QI(s) = [PI(s) N[QI(s)
PLFY VI %k Po Vo VS, P1 = Vi APy o (p—=1)xY=0vs. (p—1)AY =0
= p1 > V1% pp — Vo holds for a heap h that is the disjoint union of » (p+1)* Y =0 holds for a stack s and a heap h where h is the
heaplets h; and hy, where hy contains just cell p;, with value v, disjoint union of heaplets h; and h,, such that h; contains ownership
and hy just cell pp, with value v,. So: ownership of two disjoint of one cell, p with value 1, and h, is an arbitrary heap if s satisfies
heap cells p; and p, with p; # po. Y = 0. So, s must map Y to 0 and h is the disjoint union of the
= p1> Vi AP — v holds for a heap h that satisfies two assertions heaplet of just p with value 1 and an arbitrary disjoint heap h;.
simultaneously (is in the intersection of their interpretations): = (p+>1)A Y =0 holds for a stack s and a heap h satisfying two
(1) p1 = vi: hiis a heap of just one heap cell, p1 with value vy assertion simultaneously: p +— 1 and Y = 0. This means s must
(2) p2 =+ va: h'is a heap of just one heap cell, p, with value v, map Y to 0 and h must be the heap consisting of just that one cell.
So: ownership of just one heap cell, p; = p, with value v; = vs.
7 8
emp in the alloc rule Use of frame rule (to obtain “--- Aemp”) in Lecture 5, slide 28

{list(Y,a) N X = x}
{3z. (list(Y,) N X = x) N HEAD = z}
Q: Why have the ‘emp’ in the precondition of the alloc rule? {Uist(Y,a) A X = x) A HEAD = z}

{(list(Y,a) A X = x) x (HEAD = z A emp)}
{HEAD = z N emp}

F{X =xAemp} X :=alloc(Ey, ..., E;) {X — Eo[x/X],..., En[x/X]} HEAD := alloc(X, Y)

{HEAD — X|z/HEAD], Y[z/HEAD]}

{HEAD — X,Y}
A: This is needed for soundness. Otherwise the alloc rule would {(list(Y,a) N X = x) « HEAD — X, Y}

allow us to silently drop ownership of other heap cells. {(ist(Y,) HEAD v X, Y) A X = x)}

{3z. (list(Y,a) x HEAD — X, Y) A X = x)}
{(list(Y,)« HEAD s X, Y) A X = x}

Example: 2019-p08-q07, e

Give a loop invariant for the following list concatenation triple:

{list(X,) * list(Y, 8)}

if X = null then
. . . Z:=Y
It is good to be careful of the possibly unexpected behaviour of the
new separation logic assertions! else (

Z:=XU:=2Z,V:=[Z+1]
while V # null do (U ==V ; V:=[V + 1]);
U+1]:=Y

)

{list(Z, o« ++ B)}

11 12

Example: 2019-p08-q07, e Example: 2019-p08-q07, e

{list(X,) «list(Y,)} {(list(X, @) * list(Y, 8)) A X % null}

if X = null th
I nu en Z:=X;U: =27,V :=[Z+1];
7 —Y while V # null do (U :=V; V= [V + 1]);
U+1]:=Y
e {ist(Z, a ++ 5))

Z:=X,U:=2Z,V:=[Z+1];
while V # null do (U :=V ; V= [V + 1]);
U+1]:=Y

)
{list(Z, -+ B)} 13 14

{(list(X,) * list(Y, B8)) A X # null}
{3t,p,d. a=[t] H I A (X = t,p=list(p,d) = list(Y,)}

Z:=X;

{3t,p, 6. a=[t] H I A (Z — t,pxlist(p,d) = list(Y,B))}

U:.=7

{3t,p,0. a=[t] H dAU=ZA(Z— t,p=xlist(p,d) = list(Y,B))}
V:=[Z+1]

{3t,6. a=[t] HIAU=ZAN(Z—t,Vxlist(V,0) « list(Y,B))}

I {3y, t,0. o = v+ [t] + 6 A (plist(Z,, U) = plist(U, [t], V) * list(V,) * list(Y, B3))}

while V # null do (U :=V; V= [V + 1]);

{3y, t,6. a =~ + [t] H d A (plist(Z,~, U) = plist(U, [t], V) = list(V, 8) = list(Y, 3))
A—(V % null)}

[U+1]:=Y

{37, t,0. a =~ + [t] + d A (plist(Z,~, U) * plist(U, [t], Y) = list(V, 0) « list(Y, 3))
A=(V % null)}

{list(Z,a« + B)} o

Model Checking

Proof outlines + loop invariants

Q: How much detail to give in proof outline in exam?

Q: If asked to provide a loop invariant, do you need to
provide the full proof?

A: The exam text will be clear about that.

16

Temporal operators, e.g. in CTL

= AX1 and EX1):
= Does the state satisfying 1) have to be different from the
starting state?
= Does 1) have to continue holding?
L] A(/g/)luwz) and E((/)l Ui/)z)i
= Does 1)1 have to continue holding?
= What about 9,7

17

LTL examples

ME ¢
a yes
Q Xa no
{b} «— {b,d} Fb - yes

y/4 Fc no

— {a} [/ T (aV b)Uc no
N\ dUa yes

{a.c} —— {c} G(avbVc) yes

GFb yes
FGb no

18

LTL/CTL expressivity

An elevator property: “If it is possible to answer a call to some
level in the next step, then the elevator does that”

CTL formula ¢: A G ((Callo A E X Loca) — A X Locy)

Q: Can we express the same in LTL with formula ¢:
G (Cally A (Locy V Locz)) — X Locp?

This depends on the details of the elevator temporal model.! In
any case, 1) and ¢ are not generally equivalent. The point is:
expressing properties of the tree of possible paths out of a given
state — such as asserting the existence of some path — is not
possible with LTL.

1| think — the way we have sketched the elevator in lecture 7 — this will not

work: Loci V Locs does not imply there exists a next step such that Locy holds.

20

CTL examples

v MEY
EX(bA—c) vyes
Q AFd no
{b} «—— {b,d} EFd vyes

4){3}’// E(aUd) vyes
\ AGEFd vyes

{a,c} {c} AFEGd no
EFEGd yes

E((aV c)U(EGD)) vyes

LTL/CTL expressivity

An LTL formula not expressible in CTL: ¢ = (F p) — (F q).

a) CTL formula ¢y = (AF p) — (A F q).
¢ does not hold, 11 does.

n | n

3:{}+———1:{} ———2:{p}

b) CTL formula ¢v» =A G (p — (A F q)).
¢ holds, 1, does not.

0

—4:{q} ———5:{p}

19

21

LTL/CTL expressivity

Why are F G pin LTL and A F A G p in CTL not equivalent?

- 1:{p} 2:{} 3:{p}
U U

Two kinds of infinite paths: (L1) loop in 1 forever, (L2) loop in 3 It is good to be careful about the unexpected interaction of the

forever. Both kinds of paths eventually reach a state in which p temporal operators, with other temporal operators and with path

holds generally (1 or 3, respectively). So F G p holds. quantifiers.
Informally: A F A G p holds if (check CTL (CTL*) semantics):

= all paths w from 1 satisfy F A G p, so
= all paths m from 1 eventually reach a state where A G p holds

But path kind (L1) does not: never leaves 1, and in 1, A G p is not
satisfied, because there exists a path m that goes to 2 from there.

Q: LTL vs ACTL? 22

Simulation relations

Q: Why simulation relations and not simulation functions?
Example: AP = AP’ = {good}. M simulates M’

M M’

— 1 {}<------mm-- t---a4:{}
Good luck!

2:{good} «<----------- --+5: {good}
A

U

24

