
Introduction to Computer Graphics

1

✦ Background
✦ Rendering
✦ Graphics pipeline
✦ Rasterization
✦ Graphics hardware and OpenGL

◆ GPU & APIs
◆ OpenGL Rendering pipeline
◆ GLSL
◆ Textures
◆ Raster buffers

✦ Human vision, colour & tone mapping

What is a GPU?
� Graphics Processing Unit
� Like CPU (Central Processing

Unit) but for processing graphics
� Optimized for floating point

operations on large arrays of data
� Vertices, normals, pixels, etc.

2

What does a GPU do
� Performs all low-level tasks & a lot of high-level tasks
� Clipping, rasterisation, hidden surface removal, …

� Essentially draws millions of triangles very efficiently
� Procedural shading, texturing, animation, simulation, …
� Ray tracing (ray traversal, acceleration data structures)
� Video rendering, de- and encoding, ...
� Physics engines

� Full programmability at several pipeline stages
� fully programmable
� but optimized for massively parallel operations

3

What makes GPU so fast?
� 3D rendering can be very efficiently parallelized
� Millions of pixels
� Thousands of triangles
� Many operations executed independently at the same time

� This is why modern GPUs
� Contain between hundreds and thousands of SIMD processors

� Single Instruction Multiple Data – operate on large arrays of data
� >>1000 GB/s memory access

� This is much higher bandwidth than CPU
� But peak performance can be expected for very specific operations

4

GPU APIs
(Application Programming Interfaces)
OpenGL
� Multi-platform
� Open standard API
� Focus on general 3D

applications
� Open GL driver manages

the resources
� No ray tracing extensions

DirectX
� Microsoft Windows / Xbox
� Proprietary API
� Focus on games
� Application manages

resources

5

One more API
� Vulkan – cross platform, open standard
� Low-overhead API for high performance 3D graphics
� Compared to OpenGL / DirectX
� Reduces CPU load
� Better support of multi-CPU-core architectures
� Finer control of GPU

� But
� The code for drawing a few primitives can take 1000s line of code
� Intended for game engines and code that must be very well optimized

6

And one more
� Metal (Apple iOS8)
� low-level, low-overhead 3D GFX and compute shaders API
� Support for Apple chips, Intel HD and Iris, AMD, Nvidia
� Similar design as modern APIs, such as Vulcan
� Swift or Objective-C API
� Used mostly on iOS

7

GPGPU - general purpose computing
� OpenGL and DirectX are not meant to be used for general

purpose computing
� Example: physical simulation, machine learning

� CUDA – Nvidia’s architecture for parallel computing
� C-like programming language
� With special API for parallel instructions
� Requires Nvidia GPU

� OpenCL – Similar to CUDA, but open standard
� Can run on both GPU and some CPUs
� Supported by AMD, Intel and NVidia, Qualcomm, Apple, …

8

GPU and mobile devices
� OpenGL ES 1.0-3.2
� Stripped version of OpenGL
� Removed functionality that is not strictly necessary on mobile

devices
� Devices
� iOS: iPhone, iPad
� Android phones
� PlayStation 3
� Nintendo 3DS
� and many more

OpenGL ES 2.0 rendering (iOS)

9

WebGL and WebGPU
� WebGL (since ~2007)
� JavaScript library for 3D rendering in a web

browser
� WebGL 1.0 - based on OpenGL ES 2.0
� WebGL 2.0 – based on OpenGL ES 3.0
� Used in 3D JavaScipt libraries

� https://threejs.org/, WebXR

� WebGPU (since ~2017)
� Provides access to Vulcan, Metal, DirectX 12
� Own shading language WGSL (similar to Rust)

http://zygotebody.com/

10

https://threejs.org/

OpenGL in Java
� Standard Java API does not include OpenGL interface
� But several wrapper libraries exist

� Java OpenGL – JOGL
� Lightweight Java Game Library - LWJGL

� We will use LWJGL 3
� Seems to be better maintained
� Access to other APIs (OpenCL, OpenAL, …)

� We also need a linear algebra library
� JOML – Java OpenGL Math Library
� Operations on 2, 3, 4-dimensional vectors and matrices

11

OpenGL History
� Proprietary library IRIS GL by SGI
� OpenGL 1.0 (1992)
� OpenGL 1.2 (1998)
� OpenGL 2.0 (2004)

� GLSL
� Non-power-of-two (NPOT) textures

� OpenGL 3.0 (2008)
� Major overhaul of the API
� Many features from previous versions depreciated

12

� OpenGL 3.2 (2009)
� Core and Compatibility profiles
� Geometry shaders

� OpenGL 4.0 (2010)
� Catching up with Direct3D 11

� OpenGL 4.5 (2014)
� OpenGL 4.6 (2017)

� SPIR-V shaders

How to learn OpenGL?
� Lectures – algorithms behind OpenGL, general principles
� Tick 2 – detailed tutorial, learning by doing
� References
� OpenGL Programming Guide: The Official Guide to Learning

OpenGL, Version 4.5 with SPIR-V by John Kessenich, Graham
Sellers, Dave Shreiner ISBN-10: 0134495497

� OpenGL quick reference guide
https://www.opengl.org/documentation/glsl/

� Google search: „man gl......”
13

https://www.opengl.org/documentation/glsl/

OpenGL rendering pipeline

OpenGL programming model

CPU code GPU code
� gl* functions that

� Create OpenGL objects
� Copy data CPU<->GPU
� Modify OpenGL state
� Enqueue operations
� Synchronize CPU & GPU

� C99 library
� Wrappers in most programming

language

� Fragment shaders
� Vertex shaders
� and other shaders
� Written in GLSL

� Similar to C
� From OpenGL 4.6 could be written

in other language and compiled to
SPIR-V

15

OpenGL rendering pipeline

Vertex
data

Vertex
shader

Tessellation
control shader

Tessellation
evaluation shader

Geometry
shaderClippingRasterization

Fragment
shader

Screen
buffer

Programmable
stages Fixed stages

Primitive
assembly

16

OpenGL rendering pipeline

Vertex
data

Vertex
shader

Tessellation
control shader

Tessellation
evaluation shader

Geometry
shaderClippingRasterization

Fragment
shader

Screen
buffer

Programmable
stages Fixed stages

Primitive
assemblyProcessing of vertices,

normals, uv texture
coordinates.

17

OpenGL rendering pipeline

Vertex
data

Vertex
shader

Tessellation
control shader

Tessellation
evaluation shader

Geometry
shaderClippingRasterization

Fragment
shader

Screen
buffer

Programmable
stages Fixed stages

Primitive
setup[Optional] Create new

primitives by tessellating
existing primitives (patches).

18

OpenGL rendering pipeline

Vertex
data

Vertex
shader

Tessellation
control shader

Tessellation
evaluation shader

Geometry
shaderClippingRasterization

Fragment
shader

Screen
buffer

Programmable
stages Fixed stages

Primitive
assembly

[Optional] Operate on tessellated
geometry. Can create new primitives.

19

fur shadow volumes

OpenGL rendering pipeline

Vertex
data

Vertex
shader

Tessellation
control shader

Tessellation
evaluation shader

Geometry
shaderClippingRasterization

Fragment
shader

Screen
buffer

Programmable
stages Fixed stages

Primitive
assembly

Organizes vertices into
primitives and prepares them

for rendering.

20

OpenGL rendering pipeline

Vertex
data

Vertex
shader

Tessellation
control shader

Tessellation
evaluation shader

Geometry
shaderClippingRasterization

Fragment
shader

Screen
buffer

Programmable
stages Fixed stages

Primitive
assembly

Remove or modify vertices so
that they all lie within the
viewport (view frustum).

21

OpenGL rendering pipeline

Vertex
data

Vertex
shader

Tessellation
control shader

Tessellation
evaluation shader

Geometry
shaderClippingRasterization

Fragment
shader

Screen
buffer

Programmable
stages Fixed stages

Primitive
assembly

Generates fragments (pixels)
to be drawn for each primitive.
Interpolates vertex attributes.scanli

nes

22

OpenGL rendering pipeline

Vertex
data

Vertex
shader

Tessellation
control shader

Tessellation
evaluation

shader

Geometry
shaderClipping

Rasterization

Fragment
shader

Screen
buffer

Programmable
stages Fixed stages

Primitive
assembly

Computes colour per each fragment (pixel). Can lookup
colour in the texture. Can modify pixels’ depth value.

Also used for tone mapping.

23

Non-Photorealistic-Rendering
shader

Physically accurate
materials

Example:
preparing vertex data for a cube

24

Indices
0, 1, 2
…

Ind Positions Normals

0 0, 0, 0 0, 0, -1
… … …

Vertex attributes

Primitives (triangles)

Geometry objects in OpenGL (OO view)

25

GLSL - fundamentals

Shaders
� Shaders are small programs executed on a GPU
� Executed for each vertex, each pixel (fragment), etc.

� They are written in GLSL (OpenGL Shading Language)
� Similar to C and Java
� Primitive (int, float) and aggregate data types (ivec3, vec3)
� Structures and arrays
� Arithmetic operations on scalars, vectors and matrices
� Flow control: if, switch, for, while
� Functions

27

Example of a vertex shader
#version 330

in vec3 position; // vertex position in local space

in vec3 normal; // vertex normal in local space

out vec3 frag_normal; // fragment normal in world space

uniform mat4 mvp_matrix; // model-view-projection matrix

void main()

{

 // Typicaly normal is transformed by the model matrix

 // Since the model matrix is identity in our case, we do not modify normals

 frag_normal = normal;

 // The position is projected to the screen coordinates using mvp_matrix

 gl_Position = mvp_matrix * vec4(position, 1.0);

}
Why is this piece of

code needed? 28

Data types
� Basic types

� float, double, int, uint, bool

� Aggregate types
� float: vec2, vec3, vec4; mat2, mat3, mat4
� double: dvec2, dvec3, dvec4; dmat2, dmat3, dmat4
� int: ivec2, ivec3, ivec4
� uint: uvec2, uvec3, uvec4
� bool: bvec2, bvec3, bvec4

vec3 V = vec3(1.0, 2.0, 3.0);
mat3 M = mat3(1.0, 2.0, 3.0,
 4.0, 5.0, 6.0,
 7.0, 8.0, 9.0);
29

Indexing components in aggregate types
� Subscripts: rgba, xyzw, stpq (work exactly the same)
� float red = color.r;

� float v_y = velocity.y;

but also
� float red = color.x;

� float v_y = velocity.g;

� With 0-base index:
� float red = color[0];

� float m22 = M[1][1]; // second row and column
 // of matrix M

30

Swizzling
You can select the elements of the aggregate type:
vec4 rgba_color(1.0, 1.0, 0.0, 1.0);

vec3 rgb_color = rgba_color.rgb;

vec3 bgr_color = rgba_color.bgr;

vec3 grayscale = rgba_color.ggg;

31

Arrays
� Similar to C
float lut[5] = float[5](1.0, 1.42, 1.73, 2.0, 2.23);

� Size can be checked with “length()”
for(int i = 0; i < lut.length(); i++) {

 lut[i] *= 2;

}

32

Storage qualifiers
� const – read-only, fixed at compile time
� in – input to the shader
� out – output from the shader
� uniform – parameter passed from the application (Java), constant for

the drawn geometry
� buffer – GPU memory buffer (allocated by the application), both read

and write access
� shared – shared with a local work group (compute shaders only)

� Example: const float pi=3.14;
33

Shader inputs and outputs

Vertex
shader Fragment

Shader

out vec3 frag_normal

in vec3 frag_normal

Vertex attribute
interpolation

in vec3 position

in vec3 normal
out vec3 colour

ArrayBuffer (vertices)

ArrayBuffer (normals)
glGetAttribLocation
glBindBuffer
glVertexAttribPointer
glEnableVertexAttribArray

FrameBuffer (pixels)
[optional]
glBindFragDataLocation
or
layout(location=?) in GLSL

34

GLSL Operators
� Arithmetic: + - ++ --
� Multiplication:

� vec3 * vec3 – element-wise
� mat4 * vec4 – matrix multiplication (with a column vector)

� Bitwise (integer): <<, >>, &, |, ^
� Logical (bool): &&, ||, ^^
� Assignment:
float a=0;

a += 2.0; // Equivalent to a = a + 2.0

� See the quick reference guide at:
https://www.opengl.org/documentation/glsl/

35

https://www.opengl.org/documentation/glsl/

GLSL Math
� Trigonometric:

� radians(deg), degrees(rad), sin, cos, tan, asin, acos, atan, sinh,
cosh, tanh, asinh, acosh, atanh

� Exponential:
� pow, exp, log, exp2, log2, sqrt, inversesqrt

� Common functions:
� abs, round, floor, ceil, min, max, clamp, …

� Graphics
� reflect, refract, inversesqrt

� And many more

� See the quick reference guide at: https://www.opengl.org/documentation/glsl/

36

https://www.opengl.org/documentation/glsl/

GLSL flow control
if(bool) {

 // true

} else {

 // false

}

switch(int_value) {

 case n:

 // statements

 break;

 case m:

 // statements

 break;

 default:

}

37

for(int i = 0; i<10; i++) {

 ...

}

while(n < 10) {

 ...

}

do {

 ...

} while (n < 10)

Simple OpenGL application - flow
� Initialize rendering window & OpenGL

context
� Send the geometry (vertices, triangles,

normals) to the GPU
� Load and compile Shaders

Initialize OpenGL

Set up inputs

Draw a frame
� Clear the screen buffer
� Set the model-view-projection matrix
� Render geometry
� Flip the screen buffers

Free resources

38

Rendering geometry
� To render a single object with OpenGL
1. glUseProgram() – to activate vertex & fragment shaders
2. glVertexAttribPointer() – to indicate which Buffers with vertices and
normals should be input to the vertex shader
3. glUniform*() – to set uniforms (parameters of the fragment/vertex shader)
4. glBindTexture() – to bind the texture
5. glBindVertexArray() – to bind the vertex array
6. glDrawElements() – to queue drawing the geometry
7. Unbind all objects
� OpenGL API is designed around the idea of a state-machine – set the state & queue

drawing command

39

Textures

(Most important) OpenGL texture types

1D
s0 1

2D
s

t

0 1
0

1

s

t

p

3D

Texture can have any size but the
sizes that are powers of two (POT, 2n)
may give better performance.

CUBE_MAP Used for environment
mapping

0

0

1
1

1
0

Texel

41

Texture mapping
� 1. Define your texture

function (image) T(u,v)
� (u,v) are texture

coordinates

42

0 1
0

1

Texture mapping
� 2. Define the correspondence

between the vertices on the 3D
object and the texture
coordinates

43

Texture mapping
� 3. When rendering, for every surface point compute

texture coordinates. Use the texture function to get
texture value. Use as color or reflectance.

44

Sampling

Up-sampling
More pixels than texels
Values need to be interpolated

Down-sampling
Fewer pixels than texels
Values need to be averaged
over an area of the texture
(usually using a mipmap)

Texturev

u

45

Nearest neighbor vs.
bilinear interpolation (upsampling)

A B

C DX

Interpolate first along
x-axis between AB and
CD, then along y-axis
between the interpolated
points.

46

A B

C DX

N
ea

re
st

ne

ig
hb

ou
r

B
ili

ne
ar

in

te
rp

ol
a

tio
n

Pick the nearest
texel: D

Texel

Texture mapping examples

nearest-ne
ighbour

bilinear

u

v

47

Up-sampling

nearest-ne
ighbour

blocky
artefacts

bilinear

blurry
artefacts

u

v

✦ if one pixel in the texture map
covers several pixels in the final
image, you get visible artefacts

✦ only practical way to prevent this
is to ensure that texture map is of
sufficiently high resolution that it
does not happen

48

Down-sampling
� if the pixel covers quite a large area

of the texture, then it will be
necessary to average the texture
across that area, not just take a
sample in the middle of the area

49

Mipmap
� Textures are often stored at multiple resolutions

as a mipmap
� Each level of the pyramid is half the size of the

lower level
� Mipmap resolution is always power-of-two (1024,

512, 256, 128, ...)

� It provides pre-filtered texture (area-averaged)
when screen pixels are larger than the full
resolution texels

� Mipmap requires just an additional 1/3 of the
original texture size to store

� OpenGL can generate a mipmap with
glGenerateMipmap(GL_TEXTURE_2D)

50

This image is an illustration showing only 1/3
increase in storeage. Mipmaps are stored
differently in the GPU memory.

Down-sampling
without area averaging with area averaging

51

Texture tiling
� Repetitive patterns can be represented as texture tiles.
� The texture folds over, so that
� T(u=1.1, v=0) = T(u=0.1, v=0)

52

Gimp and other drawing software often offer plugins for creating tiled textures

Multi-surface UV maps
� A single texture is often used for multiple surfaces and

objects

Example from:
http://awshub.com/blog/blog/2011/11/01/hi-poly-vs-low-poly/

53

Bump mapping and normal mapping
� Special kind of texture that

modifies surface normal
� Surface normal is a vector that

is perpendicular to a surface
� The surface is still flat but

shading appears as on an
uneven surface

� Easily done in fragment
shaders

54

Displacement mapping
� Texture that modifies surface
� Better results than bump

mapping since the surface is
not flat

� Requires geometry shaders

55

Environment mapping
� To show environment

reflected by an object
� Assumption: infinite

distance to the source of
reflection

56

Environment mapping
� Environment cube
� Each face captures

environment in that
direction

57

CUBE_MAP

face 2

face 4

face 1face 3 face 6

Texture objects in OpenGL

58

Texture parameters
//Setup filtering, i.e. how OpenGL will interpolate the pixels when scaling
up or down

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER,
GL_LINEAR_MIPMAP_NEAREST);

//Setup wrap mode, i.e. how OpenGL will handle pixels outside of the
expected range

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);

How to
interpolate in 2D

How to interpolate
between mipmap levels

59

Raster buffers (colour, depth, stencil)

Render buffers in OpenGL
GL_FRONT GL_BACKColour:

Depth:

GL_FRONT_LEFT GL_FRONT_RIGH
T

GL_BACK_LEFT GL_BACK_RIGHT

DEPTH

Stencil: STENCIL

In stereo:

Four components:
RGBA

Typically 8 bits per
component

To block rendering selected pixels
Single component, usually 8 bits.

To resolve occlusions (see Z-buffer algorithm)
Single component, usually >8 bits

61

Double buffering
� To avoid flicker, tearing
� Use two buffers (rasters):

� Front buffer – what is shown on the screen
� Back buffer – not shown, GPU draws into that buffer

� When drawing is finished, swap front- and back-buffers
Front buffer – display
Back buffer - draw

1st buffer
2nd buffer

time

62

Triple buffering
� Do not wait for swapping to start drawing the next frame

� Shortcomings
� More memory needed
� Higher delay between drawing and displaying a frame

Front buffer – display
Back buffer - draw

1st buffer
2nd buffer

time

Front buffer – display
Back buffer - draw

time

3rd buffer

Double buffering

Get rid of these gaps

Triple buffering

63

Vertical Synchronization: V-Sync
� Pixels are copied from colour buffer to monitor row-by-row
� If front & back buffer are swapped during this process:

� Upper part of the screen contains previous frame
� Lower part of the screen contains current frame
� Result: tearing artefact

� Solution: When V-Sync is enabled
� glwfSwapInterval(1);

glSwapBuffers() waits until
the last row of pixels is copied to
the display.

64

No V-Sync vs. V-Sync

65

N
o

V-
S

yn
c

V-
S

yn
c

FreeSync (AMD) & G-Sync (Nvidia)
� Adaptive sync or Variable Refresh Rate (VRR)
� Graphics card controls timing of the frames on the display
� Can save power for 30fps video of when the screen is static
� Can reduce lag for real-time graphics

66

